Papers
Topics
Authors
Recent
2000 character limit reached

On the regularity problem for parabolic operators and the role of half-time derivative (2308.12936v3)

Published 24 Aug 2023 in math.AP

Abstract: In this paper we present the following result on regularity of solutions of the second order parabolic equation $\partial_t u - \mbox{div} (A \nabla u)+B\cdot \nabla u=0$ on cylindrical domains of the form $\Omega=\mathcal O\times\mathbb R$ where $\mathcal O\subset\mathbb Rn$ is a is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is $n-1$-Ahlfors regular. Let $u$ be a solution of such PDE in $\Omega$ and the non-tangential maximal function of its gradient in spatial directions $\tilde{N}(\nabla u)$ belongs to $Lp(\partial\Omega)$ for some $p>1$. Furthermore, assume that for $u|_{\partial\Omega}=f$ we have that $D{1/2}_tf\in Lp(\partial\Omega)$. Then both $\tilde{N}(D{1/2}_t u)$ and $\tilde{N}(D{1/2}_tH_t u)$ also belong to $Lp(\partial\Omega)$, where $D{1/2}_t$ and $H_t$ are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the $Lp$ parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.