Papers
Topics
Authors
Recent
2000 character limit reached

Physics informed Neural Networks applied to the description of wave-particle resonance in kinetic simulations of fusion plasmas (2308.12312v1)

Published 23 Aug 2023 in physics.comp-ph, cs.AI, and physics.plasm-ph

Abstract: The Vlasov-Poisson system is employed in its reduced form version (1D1V) as a test bed for the applicability of Physics Informed Neural Network (PINN) to the wave-particle resonance. Two examples are explored: the Landau damping and the bump-on-tail instability. PINN is first tested as a compression method for the solution of the Vlasov-Poisson system and compared to the standard neural networks. Second, the application of PINN to solving the Vlasov-Poisson system is also presented with the special emphasis on the integral part, which motivates the implementation of a PINN variant, called Integrable PINN (I-PINN), based on the automatic-differentiation to solve the partial differential equation and on the automatic-integration to solve the integral equation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.