Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Multiple-scale analysis of the simplest large-delay differential equation (2308.12172v1)

Published 23 Aug 2023 in math.DS and nlin.PS

Abstract: A delayed term in a differential equation reflects the fact that information takes significant time to travel from one place to another within a process being studied. Despite de apparent similarity with ordinary differential equations, delay-differential equations (DDE) are known to be fundamentally different and to require a dedicate mathematical apparatus for their analysis. Indeed, when the delay is large, it was found that they can sometimes be related to spatially extended dynamical systems. The purpose of this paper is to explain this fact in the simplest possible DDE by way of a multiple-scale analysis. We show the asymptotic correspondence of that linear DDE with the diffusion equation. This partial differential equations arises from a solvability condition that differs from the ones usually encountered in textbooks on asymptotics: In the limit of large delays, the leading-order problem is a map and secular divergence at subsequent orders stem from forcing terms in that map.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.