Papers
Topics
Authors
Recent
2000 character limit reached

Non-ergodic linear convergence property of the delayed gradient descent under the strongly convexity and the Polyak-Łojasiewicz condition (2308.11984v2)

Published 23 Aug 2023 in math.OC and cs.DC

Abstract: In this work, we establish the linear convergence estimate for the gradient descent involving the delay $\tau\in\mathbb{N}$ when the cost function is $\mu$-strongly convex and $L$-smooth. This result improves upon the well-known estimates in Arjevani et al. \cite{ASS} and Stich-Karmireddy \cite{SK} in the sense that it is non-ergodic and is still established in spite of weaker constraint of cost function. Also, the range of learning rate $\eta$ can be extended from $\eta\leq 1/(10L\tau)$ to $\eta\leq 1/(4L\tau)$ for $\tau =1$ and $\eta\leq 3/(10L\tau)$ for $\tau \geq 2$, where $L >0$ is the Lipschitz continuity constant of the gradient of cost function. In a further research, we show the linear convergence of cost function under the Polyak-{\L}ojasiewicz\,(PL) condition, for which the available choice of learning rate is further improved as $\eta\leq 9/(10L\tau)$ for the large delay $\tau$. The framework of the proof for this result is also extended to the stochastic gradient descent with time-varying delay under the PL condition. Finally, some numerical experiments are provided in order to confirm the reliability of the analyzed results.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.