Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards an astronomical foundation model for stars with a Transformer-based model (2308.10944v3)

Published 21 Aug 2023 in astro-ph.IM, astro-ph.GA, and astro-ph.SR

Abstract: Rapid strides are currently being made in the field of artificial intelligence using Transformer-based models like LLMs. The potential of these methods for creating a single, large, versatile model in astronomy has not yet been explored. In this work, we propose a framework for data-driven astronomy that uses the same core techniques and architecture as used by LLMs. Using a variety of observations and labels of stars as an example, we build a Transformer-based model and train it in a self-supervised manner with cross-survey data sets to perform a variety of inference tasks. In particular, we demonstrate that a $\textit{single}$ model can perform both discriminative and generative tasks even if the model was not trained or fine-tuned to do any specific task. For example, on the discriminative task of deriving stellar parameters from Gaia XP spectra, we achieve an accuracy of 47 K in $T_\mathrm{eff}$, 0.11 dex in $\log{g}$, and 0.07 dex in $[\mathrm{M/H}]$, outperforming an expert $\texttt{XGBoost}$ model in the same setting. But the same model can also generate XP spectra from stellar parameters, inpaint unobserved spectral regions, extract empirical stellar loci, and even determine the interstellar extinction curve. Our framework demonstrates that building and training a $\textit{single}$ foundation model without fine-tuning using data and parameters from multiple surveys to predict unmeasured observations and parameters is well within reach. Such "Large Astronomy Models" trained on large quantities of observational data will play a large role in the analysis of current and future large surveys.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube