Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data-driven Topology and Parameter Identification in Distribution Systems with limited Measurements

Published 18 Aug 2023 in eess.SY and cs.SY | (2308.09521v1)

Abstract: This manuscript presents novel techniques for identifying the switch states, phase identification, and estimation of equipment parameters in multi-phase low voltage electrical grids, which is a major challenge in long-standing German low voltage grids that lack observability and are heavily impacted by modelling errors. The proposed methods are tailored for systems with a limited number of spatially distributed measuring devices, which measure voltage magnitudes at specific nodes and some line current magnitudes. The overall approach employs a problem decomposition strategy to divide the problem into smaller subproblems, which are addressed independently. The techniques for identifying switch states and system phases are based on heuristics and a binary optimization problem using correlation analysis of the measured time series. The estimation of equipment parameters is achieved through a data-driven regression approach and by an optimization problem, and the identification of cable types is solved using a Mixed-Integer Quadratic Programming solver. To validate the presented methods, a realistic grid is used and the presented techniques are evaluated for their resilience to data quality and time resolution, discussing the limitations of the proposed methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.