Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Toeplitz Inverse Eigenvalue Problem (ToIEP) and Random Matrix Theory (RMT) Support for the Toeplitz Covariance Matrix Estimation (2308.09204v1)

Published 17 Aug 2023 in eess.SP, math.ST, and stat.TH

Abstract: "Toeplitzification" or "redundancy (spatial) averaging", the well-known routine for deriving the Toeplitz covariance matrix estimate from the standard sample covariance matrix, recently regained new attention due to the important Random Matrix Theory (RMT) findings. The asymptotic consistency in the spectral norm was proven for the Kolmogorov's asymptotics when the matrix dimension N and independent identically distributed (i.i.d.) sample volume T both tended to infinity (N->inf, T->inf, T/N->c > 0). These novel RMT results encouraged us to reassess the well-known drawback of the redundancy averaging methodology, which is the generation of the negative minimal eigenvalues for covariance matrices with big eigenvalues spread, typical for most covariance matrices of interest. We demonstrate that for this type of Toeplitz covariance matrices, convergence in the spectral norm does not prevent the generation of negative eigenvalues, even for the sample volume T that significantly exceeds the covariance matrix dimension (T >> N). We demonstrate that the ad-hoc attempts to remove the negative eigenvalues by the proper diagonal loading result in solutions with the very low likelihood. We demonstrate that attempts to exploit Newton's type iterative algorithms, designed to produce a Hermitian Toeplitz matrix with the given eigenvalues lead to the very poor likelihood of the very slowly converging solution to the desired eigenvalues. Finally, we demonstrate that the proposed algorithm for restoration of a positive definite (p.d.) Hermitian Toeplitz matrix with the specified Maximum Entropy spectrum, allows for the transformation of the (unstructured) Hermitian maximum likelihood (ML) sample matrix estimate in a p.d. Toeplitz matrix with sufficiently high likelihood.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.