Papers
Topics
Authors
Recent
2000 character limit reached

Soft theorems in de Sitter spacetime (2308.08861v2)

Published 17 Aug 2023 in hep-th and gr-qc

Abstract: In this paper, we derive a soft photon theorem and a soft gluon theorem in the de Sitter spacetime from the Ward identity of the near cosmological horizon large gauge transformation. Taking the flat limit of the de Sitter spacetime, the soft theorems naturally recover the corresponding flat spacetime soft theorems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014) 151, arXiv:1308.0589 [hep-th].
  2. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
  3. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
  4. T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
  5. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  6. S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116 no. 23, (2016) 231301, arXiv:1601.00921 [hep-th].
  7. P. Cheng and P. Mao, “Soft theorems in curved spacetime,” Phys. Rev. D 106 no. 8, (2022) L081702, arXiv:2206.11564 [hep-th].
  8. P. Cheng and P. Mao, “Soft gluon theorems in curved spacetime,” Phys. Rev. D 107 no. 6, (2023) 065010, arXiv:2211.00031 [hep-th].
  9. J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05 (2003) 013, arXiv:astro-ph/0210603.
  10. P. Creminelli, J. Noreña, and M. Simonović, “Conformal consistency relations for single-field inflation,” JCAP 07 (2012) 052, arXiv:1203.4595 [hep-th].
  11. K. Hinterbichler, L. Hui, and J. Khoury, “An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology,” JCAP 01 (2014) 039, arXiv:1304.5527 [hep-th].
  12. N. Kundu, A. Shukla, and S. P. Trivedi, “Constraints from Conformal Symmetry on the Three Point Scalar Correlator in Inflation,” JHEP 04 (2015) 061, arXiv:1410.2606 [hep-th].
  13. P. Creminelli, “On non-Gaussianities in single-field inflation,” JCAP 10 (2003) 003, arXiv:astro-ph/0306122.
  14. C. Cheung, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “On the consistency relation of the 3-point function in single field inflation,” JCAP 02 (2008) 021, arXiv:0709.0295 [hep-th].
  15. V. Assassi, D. Baumann, and D. Green, “On Soft Limits of Inflationary Correlation Functions,” JCAP 11 (2012) 047, arXiv:1204.4207 [hep-th].
  16. N. Kundu, A. Shukla, and S. P. Trivedi, “Ward Identities for Scale and Special Conformal Transformations in Inflation,” JHEP 01 (2016) 046, arXiv:1507.06017 [hep-th].
  17. A. Shukla, S. P. Trivedi, and V. Vishal, “Symmetry constraints in inflation, α𝛼\alphaitalic_α-vacua, and the three point function,” JHEP 12 (2016) 102, arXiv:1607.08636 [hep-th].
  18. N. Bittermann and A. Joyce, “Soft limits of the wavefunction in exceptional scalar theories,” JHEP 03 (2023) 092, arXiv:2203.05576 [hep-th].
  19. C. Armstrong, A. Lipstein, and J. Mei, “Enhanced soft limits in de Sitter space,” JHEP 12 (2022) 064, arXiv:2210.02285 [hep-th].
  20. S. Bhatkar and D. Jain, “Perturbative soft photon theorems in de Sitter spacetime,” arXiv:2212.14637 [hep-th].
  21. C. Teitelboim, “Gravitational thermodynamics of Schwarzschild-de Sitter space,” in Meeting on Strings and Gravity: Tying the Forces Together, pp. 291–299. 2001. arXiv:hep-th/0203258.
  22. A. Gomberoff and C. Teitelboim, “de Sitter black holes with either of the two horizons as a boundary,” Phys. Rev. D 67 (2003) 104024, arXiv:hep-th/0302204.
  23. G. Barnich, A. Gomberoff, and H. A. Gonzalez, “The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes,” Phys. Rev. D 86 (2012) 024020, arXiv:1204.3288 [gr-qc].
  24. N. Miller, “From Noether’s Theorem to Bremsstrahlung: a pedagogical introduction to large gauge transformations and classical soft theorems,” arXiv:2112.05289 [hep-th].
  25. G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B 633 (2002) 3–82, arXiv:hep-th/0111246.
  26. H. Adami, D. Grumiller, S. Sadeghian, M. M. Sheikh-Jabbari, and C. Zwikel, “T-Witts from the horizon,” JHEP 04 (2020) 128, arXiv:2002.08346 [hep-th].
  27. R. P. Geroch, “Limits of spacetimes,” Commun. Math. Phys. 13 (1969) 180–193.
  28. E. Hijano and D. Neuenfeld, “Soft photon theorems from CFT Ward identites in the flat limit of AdS/CFT,” JHEP 11 (2020) 009, arXiv:2005.03667 [hep-th].
  29. P. Mao and J.-B. Wu, “Note on asymptotic symmetries and soft gluon theorems,” Phys. Rev. D 96 no. 6, (2017) 065023, arXiv:1704.05740 [hep-th].
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.