Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying Overfitting: Introducing the Overfitting Index (2308.08682v1)

Published 16 Aug 2023 in cs.LG, cs.AI, and cs.CV

Abstract: In the rapidly evolving domain of machine learning, ensuring model generalizability remains a quintessential challenge. Overfitting, where a model exhibits superior performance on training data but falters on unseen data, is a recurrent concern. This paper introduces the Overfitting Index (OI), a novel metric devised to quantitatively assess a model's tendency to overfit. Through extensive experiments on the Breast Ultrasound Images Dataset (BUS) and the MNIST dataset using architectures such as MobileNet, U-Net, ResNet, Darknet, and ViT-32, we illustrate the utility and discernment of the OI. Our results underscore the variable overfitting behaviors across architectures and highlight the mitigative impact of data augmentation, especially on smaller and more specialized datasets. The ViT-32's performance on MNIST further emphasizes the robustness of certain models and the dataset's comprehensive nature. By providing an objective lens to gauge overfitting, the OI offers a promising avenue to advance model optimization and ensure real-world efficacy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.