Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analyzing the Capabilities of Nature-inspired Feature Selection Algorithms in Predicting Student Performance (2308.08574v2)

Published 15 Aug 2023 in cs.LG, cs.AI, and cs.CY

Abstract: Predicting student performance is key in leveraging effective pre-failure interventions for at-risk students. As educational data grows larger, more effective means of analyzing student data in a timely manner are needed in order to provide useful predictions and interventions. In this paper, an analysis was conducted to determine the relative performance of a suite of nature-inspired algorithms in the feature-selection portion of ensemble algorithms used to predict student performance. A Swarm Intelligence ML engine (SIMLe) was developed to run this suite in tandem with a series of traditional ML classification algorithms to analyze three student datasets: instance-based clickstream data, hybrid single-course performance, and student meta-performance when taking multiple courses simultaneously. These results were then compared to previous predictive algorithms and, for all datasets analyzed, it was found that leveraging an ensemble approach using nature-inspired algorithms for feature selection and traditional ML algorithms for classification significantly increased predictive accuracy while also reducing feature set size by up to 65 percent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.