Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PKE-RRT: Efficient Multi-Goal Path Finding Algorithm Driven by Multi-Task Learning Model (2308.07972v2)

Published 15 Aug 2023 in cs.RO

Abstract: Multi-goal path finding (MGPF) aims to find a closed and collision-free path to visit a sequence of goals orderly. As a physical travelling salesman problem, an undirected complete graph with accurate weights is crucial for determining the visiting order. Lack of prior knowledge of local paths between vertices poses challenges in meeting the optimality and efficiency requirements of algorithms. In this study, a multi-task learning model designated Prior Knowledge Extraction (PKE), is designed to estimate the local path length between pairwise vertices as the weights of the graph. Simultaneously, a promising region and a guideline are predicted as heuristics for the path-finding process. Utilizing the outputs of the PKE model, a variant of Rapidly-exploring Random Tree (RRT) is proposed known as PKE-RRT. It effectively tackles the MGPF problem by a local planner incorporating a prioritized visiting order, which is obtained from the complete graph. Furthermore, the predicted region and guideline facilitate efficient exploration of the tree structure, enabling the algorithm to rapidly provide a sub-optimal solution. Extensive numerical experiments demonstrate the outstanding performance of the PKE-RRT for the MGPF problem with a different number of goals, in terms of calculation time, path cost, sample number, and success rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. Faigl and G. A. Hollinger, “Autonomous data collection using a self-organizing map,” IEEE transactions on neural networks and learning systems, vol. 29, no. 5, pp. 1703–1715, 2017.
  2. J. Faigl, “Data collection path planning with spatially correlated measurements using growing self-organizing array,” Applied Soft Computing, vol. 75, pp. 130–147, 2019.
  3. R. Pěnička, J. Faigl, and M. Saska, “Physical orienteering problem for unmanned aerial vehicle data collection planning in environments with obstacles,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3005–3012, 2019.
  4. Q. Xu, J. Li, S. Koenig, and H. Ma, “Multi-goal multi-agent pickup and delivery,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9964–9971.
  5. J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig, “Lifelong multi-agent path finding in large-scale warehouses,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 13, 2021, pp. 11 272–11 281.
  6. J. McMahon and E. Plaku, “Autonomous underwater vehicle mine countermeasures mission planning via the physical traveling salesman problem,” in OCEANS 2015-MTS/IEEE Washington.   IEEE, 2015, pp. 1–5.
  7. D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling salesman problem: Wcci 2012 competition,” in 2012 IEEE Congress on Evolutionary Computation.   IEEE, 2012, pp. 1–8.
  8. C. V. Applegate D, Bixby R and C. W. Concorde TSP solver. (2006). [Online]. Available: http://www.math.uwaterloo.ca/tsp/concorde.html
  9. F. Dimitrovski. Elkai. (2019). [Online]. Available: https://github.com/fikisipi/elkai.
  10. B. F. Al-Dulaimi and H. A. Ali, “Enhanced traveling salesman problem solving by genetic algorithm technique (tspga),” International Journal of Mathematical and Computational Sciences, vol. 2, no. 2, pp. 123–129, 2008.
  11. M. Worboys, “The travelling salesman problem (a guided tour of combinatorial optimisation), edited by el lawler, jk lenstra, ahg rinnooy kan and db shmoys. pp 465.£ 39· 95. 1985. isbn 0-471-90413-9 (wiley),” The Mathematical Gazette, vol. 70, no. 454, pp. 327–328, 1986.
  12. S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion planning,” Robotics Science and Systems VI, vol. 104, no. 2, 2010.
  13. S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.
  14. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  15. G. Best, J. Faigl, and R. Fitch, “Multi-robot path planning for budgeted active perception with self-organising maps,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 3164–3171.
  16. D. Devaurs, T. Siméon, and J. Cortés, “A multi-tree extension of the transition-based rrt: Application to ordering-and-pathfinding problems in continuous cost spaces,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 2991–2996.
  17. L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-space costmaps,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, 2010.
  18. V. Vonásek and R. Pěnička, “Space-filling forest for multi-goal path planning,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).   IEEE, 2019, pp. 1587–1590.
  19. J. Janoš, V. Vonásek, and R. Pěnička, “Multi-goal path planning using multiple random trees,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4201–4208, 2021.
  20. N. Chandak, K. Chour, S. Rathinam, and R. Ravi, “Informed steiner trees: Sampling and pruning for multi-goal path finding in high dimensions,” in Proceedings of the International Symposium on Combinatorial Search, vol. 15, no. 1, 2022, pp. 258–260.
  21. K. Chour, S. Rathinam, and R. Ravi, “S*: A heuristic information-based approximation framework for multi-goal path finding,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 31, 2021, pp. 85–93.
  22. J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural rrt*: Learning-based optimal path planning,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758, 2020.
  23. J. Wang, J. Liu, W. Chen, W. Chi, and M. Q.-H. Meng, “Robot path planning via neural-network-driven prediction,” IEEE Transactions on Artificial Intelligence, vol. 3, no. 3, pp. 451–460, 2021.
  24. H. Ma, C. Li, J. Liu, J. Wang, and M. Q.-H. Meng, “Enhance connectivity of promising regions for sampling-based path planning,” IEEE Transactions on Automation Science and Engineering, 2022.
  25. Y. Huang, G. Kairui, and L. Hee-hyol, “S&reg: End-to-end learning-based model for multi-goal path planning problem,” 2023, proceedings of IEEE International Conference on Robot Human Interactive Communication (ROMAN-2023).
  26. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
  27. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  28. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth international conference on 3D vision (3DV).   Ieee, 2016, pp. 565–571.
  29. S. Chennupati, G. Sistu, S. Yogamani, and S. A. Rawashdeh, “Multinet++: Multi-stream feature aggregation and geometric loss strategy for multi-task learning,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).   Los Alamitos, CA, USA: IEEE Computer Society, jun 2019, pp. 1200–1210. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPRW.2019.00159
  30. Wang. Satellite buildings semantic segmentation data (version 6). (2021). [Online]. Available: https://www.kaggle.com/datasets/hyyyrwang/buildings-dataset

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.