Papers
Topics
Authors
Recent
2000 character limit reached

Simple Information Processing Tasks with Unbounded Quantum Advantage (2308.07727v4)

Published 15 Aug 2023 in quant-ph

Abstract: Communication scenarios between two parties can be implemented by first encoding messages into some states of a physical system which acts as the physical medium of the communication and then decoding the messages by measuring the state of the system. We show that already in the simplest possible scenarios it is possible to detect a definite, unbounded advantage of quantum systems over classical systems. We do this by constructing a family of operationally meaningful communication tasks each of which on one hand can be implemented by using just a single qubit but which on the other hand require unboundedly larger classical system for classical implementation. Furthemore, we show that even though with the additional resource of shared randomness the proposed communication tasks can be implemented by both quantum and classical systems of the same size, the number of coordinated actions needed for the classical implementation also grows unboundedly. In particular, no finite storage can be used to store all the coordinated actions needed to implement all the possible quantum communication tasks with classical systems. As a consequence, shared randomness cannot be viewed as a free resource.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  2. B. F. Toner and D. Bacon, Communication cost of simulating bell correlations, Phys. Rev. Lett. 91, 187904 (2003).
  3. M. J. Renner, A. Tavakoli, and M. T. Quintino, Classical cost of transmitting a qubit, Phys. Rev. Lett. 130, 120801 (2023).
  4. C. Perry, R. Jain, and J. Oppenheim, Communication tasks with infinite quantum-classical separation, Phys. Rev. Lett. 115, 030504 (2015).
  5. R. Chaves, J. B. Brask, and N. Brunner, Device-independent tests of entropy, Phys. Rev. Lett. 115, 110501 (2015).
  6. P.-E. Emeriau, M. Howard, and S. Mansfield, Quantum advantage in information retrieval, PRX Quantum 3, 020307 (2022).
  7. E. F. Galvão and L. Hardy, Substituting a qubit for an arbitrarily large number of classical bits, Phys. Rev. Lett. 90, 087902 (2003).
  8. S. Halder, A. Streltsov, and M. Banik, Quantum vs classical: identifying the value of a random variable unambiguously, arXiv:2211.09194 (2022).
  9. Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis, Exponential separation of quantum and classical one-way communication complexity, SIAM Journal on Computing 38, 366 (2008).
  10. S. Aaronson, Limitations of quantum advice and one-way communication, Theory of Computing 1, 1 (2005).
  11. P. E. Frenkel and M. Weiner, Classical information storage in an n-level quantum system, Commun. Math. Phys. 340, 563 (2015).
  12. T. Heinosaari, O. Kerppo, and L. Leppäjärvi, Communication tasks in operational theories, J. Phys. A: Math. Theor. 53, 435302 (2020).
  13. T. Heinosaari and O. Kerppo, Communication of partial ignorance with qubits, J. Phys. A: Math. Theor. 52, 395301 (2019).
  14. A. S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel, Probl. Peredachi Inf. 9, 3 (1973).
  15. O. Kerppo, Quantum communication tasks, Ph.D. thesis (University of Turku, 2023).
  16. T. Lee, Z. Wei, and R. de Wolf, Some upper and lower bounds on psd-rank, Math. Program. 162, 495 (2017).
  17. Y. Shitov, The complexity of positive semidefinite matrix factorization, SIAM J. Optim. 27, 18981909 (2016).
  18. S. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim. 20, 1364 (2009).
  19. N. Gillis and F. Glineur, On the geometric interpretation of the nonnegative rank, Linear Algebra Appl. 437, 2685 (2012).
  20. Y. Shitov, An upper bound for nonnegative rank, Journal of Combinatorial Theory, Series A 122, 126 (2014).
  21. P. Hrubeš, On the nonnegative rank of distance matrices, Inf. Process. Lett 112, 457 (2012).
  22. T. Heinosaari and O. Kerppo, Antidistinguishability of pure quantum states, J. Phys. A: Math. Theor. 51, 365303 (2018).
  23. C. M. Caves, C. A. Fuchs, and R. Schack, Conditions for compatibility of quantum-state assignments, Phys. Rev. A 66, 062111 (2002).
  24. V. Havlíček and J. Barrett, Simple communication complexity separation from quantum state antidistinguishability, Phys. Rev. Research 2, 013326 (2020).
  25. V. Russo and J. Sikora, Inner products of pure states and their antidistinguishability, Phys. Rev. A 107, L030202 (2023).
  26. M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the quantum state, Nature Physics 8, 475 (2012).
  27. M. S. Leifer and C. Duarte, Noncontextuality inequalities from antidistinguishability, Phys. Rev. A 101, 062113 (2020).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.