Small sunflowers and the structure of slice rank decompositions
Abstract: Let $d \ge 3$ be an integer. We show that whenever an order-$d$ tensor admits $d+1$ decompositions according to Tao's slice rank, if the linear subspaces spanned by their one-variable functions constitute a sunflower for each choice of special coordinate, then the tensor admits a decomposition where these linear subspaces are contained in the centers of these respective sunflowers. As an application, we deduce that for every nonnegative integer $k$ and every finite field $\mathbb{F}$ there exists an integer $C(d,k,|\mathbb{F}|)$ such that every order-$d$ tensor with slice rank $k$ over $\mathbb{F}$ admits at most $C(d,k,|\mathbb{F}|)$ decompositions with length $k$, up to a class of transformations that can be easily described.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.