Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

One-shot lip-based biometric authentication: extending behavioral features with authentication phrase information (2308.06944v1)

Published 14 Aug 2023 in cs.CV

Abstract: Lip-based biometric authentication (LBBA) is an authentication method based on a person's lip movements during speech in the form of video data captured by a camera sensor. LBBA can utilize both physical and behavioral characteristics of lip movements without requiring any additional sensory equipment apart from an RGB camera. State-of-the-art (SOTA) approaches use one-shot learning to train deep siamese neural networks which produce an embedding vector out of these features. Embeddings are further used to compute the similarity between an enrolled user and a user being authenticated. A flaw of these approaches is that they model behavioral features as style-of-speech without relation to what is being said. This makes the system vulnerable to video replay attacks of the client speaking any phrase. To solve this problem we propose a one-shot approach which models behavioral features to discriminate against what is being said in addition to style-of-speech. We achieve this by customizing the GRID dataset to obtain required triplets and training a siamese neural network based on 3D convolutions and recurrent neural network layers. A custom triplet loss for batch-wise hard-negative mining is proposed. Obtained results using an open-set protocol are 3.2% FAR and 3.8% FRR on the test set of the customized GRID dataset. Additional analysis of the results was done to quantify the influence and discriminatory power of behavioral and physical features for LBBA.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.