Papers
Topics
Authors
Recent
2000 character limit reached

How complex is the microarray dataset? A novel data complexity metric for biological high-dimensional microarray data (2308.06430v1)

Published 12 Aug 2023 in cs.CE

Abstract: Data complexity analysis quantifies the hardness of constructing a predictive model on a given dataset. However, the effectiveness of existing data complexity measures can be challenged by the existence of irrelevant features and feature interactions in biological micro-array data. We propose a novel data complexity measure, depth, that leverages an evolutionary inspired feature selection algorithm to quantify the complexity of micro-array data. By examining feature subsets of varying sizes, the approach offers a novel perspective on data complexity analysis. Unlike traditional metrics, depth is robust to irrelevant features and effectively captures complexity stemming from feature interactions. On synthetic micro-array data, depth outperforms existing methods in robustness to irrelevant features and identifying complexity from feature interactions. Applied to case-control genotype and gene-expression micro-array datasets, the results reveal that a single feature of gene-expression data can account for over 90% of the performance of multi-feature model, confirming the adequacy of the commonly used differentially expressed gene (DEG) feature selection method for the gene expression data. Our study also demonstrates that constructing predictive models for genotype data is harder than gene expression data. The results in this paper provide evidence for the use of interpretable machine learning algorithms on microarray data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.