Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Models and Knowledge Graphs: Opportunities and Challenges (2308.06374v1)

Published 11 Aug 2023 in cs.AI and cs.CL
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Abstract: LLMs have taken Knowledge Representation -- and the world -- by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Introduction

The integration of LLMs with Knowledge Graphs (KGs) is transforming the landscape of Knowledge Representation (KR) and artificial intelligence. LLMs showcase exceptional performance in a breadth of language tasks, raising discussions around the potential of representing knowledge through these models' parameters. This hybrid approach to knowledge representation promises to broaden the traditional KR concepts, previously centered on explicit knowledge like text and structured databases. The collaboration between LLMs and KGs introduces exciting opportunities but also presents considerable challenges that this paper scrutinizes in detail.

Hybrid Knowledge Representation

Traditionally, knowledge has been passed down in textual form or housed in databases and KGs featuring structured data. LLMs offer a paradigm shift, presenting a unified representation that combines explicit knowledge and parametric knowledge. This paper explores how KGs and Transformer-based LLMs, such as BERT and the GPT series, are being investigated in tandem. With KGs utilized for tasks such as knowledge extraction and LLMs for their representational capabilities, there is a deeper understanding of the shift towards this hybrid representation model. Additionally, significant advancements have been contributed by methods using LLMs to augment KGs in areas like knowledge extraction and KG construction.

Debating LLM and KG Integration

Within the Knowledge Computing community, the usage of parametric and explicit knowledge is hotly debated. Issues such as the reasoning capabilities of KGs with their structured representations versus the pattern-based knowledge of LLMs form the core of these discussions. There's also a focus on high-precision methods for KG construction, given the stringent accuracy requirements in applications like Google's Knowledge Graph. Furthermore, LLMs struggle with processing numerical values, which poses issues in KG completion tasks that involve numerical data. A critical research question revolves around how much knowledge LLMs can effectively memorize, especially regarding less common or 'long-tail' entities.

Opportunities and Challenges

With the emergence of parametric knowledge, new opportunities arise. For instance, LLMs provide instant access to vast text corpora and can enhance many subtasks within the knowledge engineering pipeline. They also allow for more advanced language understanding and the potential to compress and consolidate knowledge, which is a vital step in traditional knowledge engineering. Looking forward, the vision includes using LLMs to simplify steps in the knowledge engineering pipeline and combining KGs and LLMs to increase reliability in LLM usage. As research continues, key topics include KGs' role in enhancing pre-trained LLMs, prompt construction, and retrieval augmented methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (16)
  1. Jeff Z. Pan (78 papers)
  2. Simon Razniewski (49 papers)
  3. Jan-Christoph Kalo (9 papers)
  4. Sneha Singhania (7 papers)
  5. Jiaoyan Chen (85 papers)
  6. Stefan Dietze (35 papers)
  7. Hajira Jabeen (5 papers)
  8. Janna Omeliyanenko (1 paper)
  9. Wen Zhang (170 papers)
  10. Matteo Lissandrini (7 papers)
  11. Russa Biswas (13 papers)
  12. Gerard de Melo (78 papers)
  13. Angela Bonifati (37 papers)
  14. Edlira Vakaj (5 papers)
  15. Mauro Dragoni (8 papers)
  16. Damien Graux (7 papers)
Citations (52)
Youtube Logo Streamline Icon: https://streamlinehq.com