Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Large Language Models and Knowledge Graphs: A Roadmap (2306.08302v3)

Published 14 Jun 2023 in cs.CL and cs.AI
Unifying Large Language Models and Knowledge Graphs: A Roadmap

Abstract: LLMs, such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.

Enhancing AI with Structured Knowledge: A Pathway to Smarter Models

Introduction to Knowledge Integration in AI

The integration of structured knowledge into AI systems is a groundbreaking development in NLP and AI. This paper presents a comprehensive roadmap for merging LLMs, such as ChatGPT and GPT-4, with knowledge graphs (KGs) like Wikipedia. LLMs exhibit impressive language processing capabilities but often lack access to updated and factual knowledge. Conversely, KGs store explicit and structured factual knowledge but are static and challenging to evolve. Unifying LLMs with KGs aims to leverage the strengths of both to address their individual limitations.

Roadmap for Unifying LLMs with KGs

The proposed roadmap outlines three frameworks where LLMs and KGs are combined to enhance one another:

  1. KG-Enhanced LLMs: KGs are used to improve the pre-training, inference, and interpretability of LLMs. By incorporating KG information during LLM pre-training, the models can learn from explicit knowledge sources. During inference, dynamically accessing KGs enables LLMs to produce more accurate and up-to-date responses. Lastly, leveraging KGs also aids in interpreting and probing the knowledge within LLMs.
  2. LLM-Augmented KGs: LLMs enhance KG-related tasks by using their language understanding capabilities. They help in KG embedding, completion, and construction, as well as in generating text from graph structures and answering questions based on KGs.
  3. Synergized LLMs + KGs: This approach aims for a mutual enhancement where both LLMs and KGs contribute equally to tasks that require reasoning driven by both data and knowledge, such as bidirectional reasoning.

Applications in AI

The collaboration between LLMs and KGs has profound implications across various applications. It bolsters AI assistants, recommendation systems, and web search capabilities. For instance, ChatGPT-like models with KG support can offer more knowledgeable interactions, while domain-specific KGs aid AI in providing accurate recommendations and medical diagnoses.

Challenges and Future Research

Despite the progress, several challenges remain. One significant issue is the "hallucination" in LLMs, where models generate factually incorrect information. Detecting and correcting such errors is critical for reliable AI applications. Another challenge is the "black box" nature of some LLMs, limiting the ability to incorporate or edit structured knowledge. Moreover, extending these methods to multi-modal data, which includes visual and auditory information alongside text, represents an exciting direction for future research.

Concluding Thoughts

The union of LLMs and KGs holds the promise of AI systems that are not only linguistically adept but also knowledgeable and factually accurate. As research continues to address the challenges in this domain, we are likely to see AI that can understand and interact with the world in more sophisticated ways, driven by the synergies of structured knowledge and language proficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (262)
  1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  2. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
  3. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.
  4. D. Su, Y. Xu, G. I. Winata, P. Xu, H. Kim, Z. Liu, and P. Fung, “Generalizing question answering system with pre-trained language model fine-tuning,” in Proceedings of the 2nd Workshop on Machine Reading for Question Answering, 2019, pp. 203–211.
  5. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.   Association for Computational Linguistics, 2020, pp. 7871–7880. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.703
  6. J. Li, T. Tang, W. X. Zhao, and J.-R. Wen, “Pretrained language models for text generation: A survey,” arXiv preprint arXiv:2105.10311, 2021.
  7. J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities of large language models,” Transactions on Machine Learning Research.
  8. K. Malinka, M. Perešíni, A. Firc, O. Hujňák, and F. Januš, “On the educational impact of chatgpt: Is artificial intelligence ready to obtain a university degree?” arXiv preprint arXiv:2303.11146, 2023.
  9. Z. Li, C. Wang, Z. Liu, H. Wang, S. Wang, and C. Gao, “Cctest: Testing and repairing code completion systems,” ICSE, 2023.
  10. J. Liu, C. Liu, R. Lv, K. Zhou, and Y. Zhang, “Is chatgpt a good recommender? a preliminary study,” arXiv preprint arXiv:2304.10149, 2023.
  11. W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223, 2023.
  12. X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained models for natural language processing: A survey,” Science China Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020.
  13. J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu, “Harnessing the power of llms in practice: A survey on chatgpt and beyond,” arXiv preprint arXiv:2304.13712, 2023.
  14. F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller, “Language models as knowledge bases?” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 2463–2473.
  15. Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.
  16. H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A survey of controllable text generation using transformer-based pre-trained language models,” arXiv preprint arXiv:2201.05337, 2022.
  17. M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen, “A survey of the state of explainable ai for natural language processing,” arXiv preprint arXiv:2010.00711, 2020.
  18. J. Wang, X. Hu, W. Hou, H. Chen, R. Zheng, Y. Wang, L. Yang, H. Huang, W. Ye, X. Geng et al., “On the robustness of chatgpt: An adversarial and out-of-distribution perspective,” arXiv preprint arXiv:2302.12095, 2023.
  19. S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE transactions on neural networks and learning systems, vol. 33, no. 2, pp. 494–514, 2021.
  20. D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,” Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.
  21. S. Hu, L. Zou, and X. Zhang, “A state-transition framework to answer complex questions over knowledge base,” in Proceedings of the 2018 conference on empirical methods in natural language processing, 2018, pp. 2098–2108.
  22. J. Zhang, B. Chen, L. Zhang, X. Ke, and H. Ding, “Neural, symbolic and neural-symbolic reasoning on knowledge graphs,” AI Open, vol. 2, pp. 14–35, 2021.
  23. B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal of Network and Computer Applications, vol. 185, p. 103076, 2021.
  24. T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, K. Jayant, L. Ni, M. Kathryn, M. Thahir, N. Ndapandula, P. Emmanouil, R. Alan, S. Mehdi, S. Burr, W. Derry, G. Abhinav, C. Xi, S. Abulhair, and W. Joel, “Never-ending learning,” Communications of the ACM, vol. 61, no. 5, pp. 103–115, 2018.
  25. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” Advances in neural information processing systems, vol. 26, 2013.
  26. L. Yao, C. Mao, and Y. Luo, “KG-BERT: BERT for knowledge graph completion,” CoRR, vol. abs/1909.03193, 2019. [Online]. Available: http://arxiv.org/abs/1909.03193
  27. L. Luo, Y.-F. Li, G. Haffari, and S. Pan, “Normalizing flow-based neural process for few-shot knowledge graph completion,” SIGIR, 2023.
  28. Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity,” arXiv preprint arXiv:2302.04023, 2023.
  29. X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” arXiv preprint arXiv:2203.11171, 2022.
  30. O. Golovneva, M. Chen, S. Poff, M. Corredor, L. Zettlemoyer, M. Fazel-Zarandi, and A. Celikyilmaz, “Roscoe: A suite of metrics for scoring step-by-step reasoning,” ICLR, 2023.
  31. F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in Proceedings of the 16th international conference on World Wide Web, 2007, pp. 697–706.
  32. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and T. Mitchell, “Toward an architecture for never-ending language learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 24, no. 1, 2010, pp. 1306–1313.
  33. L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu, “A comprehensive survey on automatic knowledge graph construction,” arXiv preprint arXiv:2302.05019, 2023.
  34. G. Wan, S. Pan, C. Gong, C. Zhou, and G. Haffari, “Reasoning like human: Hierarchical reinforcement learning for knowledge graph reasoning,” in Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 1926–1932.
  35. Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie: Enhanced language representation with informative entities,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 1441–1451.
  36. W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, and P. Wang, “K-BERT: enabling language representation with knowledge graph,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.   AAAI Press, 2020, pp. 2901–2908. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/5681
  37. Y. Liu, Y. Wan, L. He, H. Peng, and P. S. Yu, “KG-BART: knowledge graph-augmented BART for generative commonsense reasoning,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 6418–6425. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/16796
  38. B. Y. Lin, X. Chen, J. Chen, and X. Ren, “Kagnet: Knowledge-aware graph networks for commonsense reasoning,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 2829–2839.
  39. D. Dai, L. Dong, Y. Hao, Z. Sui, B. Chang, and F. Wei, “Knowledge neurons in pretrained transformers,” arXiv preprint arXiv:2104.08696, 2021.
  40. X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang, “Kepler: A unified model for knowledge embedding and pre-trained language representation,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 176–194, 2021.
  41. I. Melnyk, P. Dognin, and P. Das, “Grapher: Multi-stage knowledge graph construction using pretrained language models,” in NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
  42. P. Ke, H. Ji, Y. Ran, X. Cui, L. Wang, L. Song, X. Zhu, and M. Huang, “JointGT: Graph-text joint representation learning for text generation from knowledge graphs,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.   Online: Association for Computational Linguistics, Aug. 2021, pp. 2526–2538. [Online]. Available: https://aclanthology.org/2021.findings-acl.223
  43. J. Jiang, K. Zhou, W. X. Zhao, and J.-R. Wen, “Unikgqa: Unified retrieval and reasoning for solving multi-hop question answering over knowledge graph,” ICLR 2023, 2023.
  44. M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S. Liang, and J. Leskovec, “Deep bidirectional language-knowledge graph pretraining,” Advances in Neural Information Processing Systems, vol. 35, pp. 37 309–37 323, 2022.
  45. N. Choudhary and C. K. Reddy, “Complex logical reasoning over knowledge graphs using large language models,” arXiv preprint arXiv:2305.01157, 2023.
  46. S. Wang, Z. Wei, J. Xu, and Z. Fan, “Unifying structure reasoning and language model pre-training for complex reasoning,” arXiv preprint arXiv:2301.08913, 2023.
  47. C. Zhen, Y. Shang, X. Liu, Y. Li, Y. Chen, and D. Zhang, “A survey on knowledge-enhanced pre-trained language models,” arXiv preprint arXiv:2212.13428, 2022.
  48. X. Wei, S. Wang, D. Zhang, P. Bhatia, and A. Arnold, “Knowledge enhanced pretrained language models: A compreshensive survey,” arXiv preprint arXiv:2110.08455, 2021.
  49. D. Yin, L. Dong, H. Cheng, X. Liu, K.-W. Chang, F. Wei, and J. Gao, “A survey of knowledge-intensive nlp with pre-trained language models,” arXiv preprint arXiv:2202.08772, 2022.
  50. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  51. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for self-supervised learning of language representations,” in International Conference on Learning Representations, 2019.
  52. K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text encoders as discriminators rather than generators,” arXiv preprint arXiv:2003.10555, 2020.
  53. L. Yao, C. Mao, and Y. Luo, “Kg-bert: Bert for knowledge graph completion,” arXiv preprint arXiv:1909.03193, 2019.
  54. K. Hakala and S. Pyysalo, “Biomedical named entity recognition with multilingual bert,” in Proceedings of the 5th workshop on BioNLP open shared tasks, 2019, pp. 56–61.
  55. Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri, T. Schuster, S. Zheng et al., “Ul2: Unifying language learning paradigms,” in The Eleventh International Conference on Learning Representations, 2022.
  56. V. Sanh, A. Webson, C. Raffel, S. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler, A. Raja, M. Dey et al., “Multitask prompted training enables zero-shot task generalization,” in International Conference on Learning Representations, 2022.
  57. B. Zoph, I. Bello, S. Kumar, N. Du, Y. Huang, J. Dean, N. Shazeer, and W. Fedus, “St-moe: Designing stable and transferable sparse expert models,” URL https://arxiv. org/abs/2202.08906, 2022.
  58. A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia, W. L. Tam, Z. Ma, Y. Xue, J. Zhai, W. Chen, Z. Liu, P. Zhang, Y. Dong, and J. Tang, “GLM-130b: An open bilingual pre-trained model,” in The Eleventh International Conference on Learning Representations (ICLR), 2023. [Online]. Available: https://openreview.net/forum?id=-Aw0rrrPUF
  59. L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and C. Raffel, “mt5: A massively multilingual pre-trained text-to-text transformer,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 483–498.
  60. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  61. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  62. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
  63. E. Saravia, “Prompt Engineering Guide,” https://github.com/dair-ai/Prompt-Engineering-Guide, 2022, accessed: 2022-12.
  64. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems.
  65. J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. Le Bras, Y. Choi, and H. Hajishirzi, “Generated knowledge prompting for commonsense reasoning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 3154–3169.
  66. Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba, “Large language models are human-level prompt engineers,” in NeurIPS 2022 Foundation Models for Decision Making Workshop.
  67. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A collaboratively created graph database for structuring human knowledge,” in ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250.
  68. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus for a web of open data,” in The Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007+ ASWC 2007, Busan, Korea, November 11-15, 2007. Proceedings.   Springer, 2007, pp. 722–735.
  69. B. Xu, Y. Xu, J. Liang, C. Xie, B. Liang, W. Cui, and Y. Xiao, “Cn-dbpedia: A never-ending chinese knowledge extraction system,” in Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27-30, 2017, Proceedings, Part II.   Springer, 2017, pp. 428–438.
  70. P. Hai-Nyzhnyk, “Vikidia as a universal multilingual online encyclopedia for children,” The Encyclopedia Herald of Ukraine, vol. 14, 2022.
  71. F. Ilievski, P. Szekely, and B. Zhang, “Cskg: The commonsense knowledge graph,” Extended Semantic Web Conference (ESWC), 2021.
  72. R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general knowledge,” in Proceedings of the AAAI conference on artificial intelligence, vol. 31, no. 1, 2017.
  73. H. Ji, P. Ke, S. Huang, F. Wei, X. Zhu, and M. Huang, “Language generation with multi-hop reasoning on commonsense knowledge graph,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 725–736.
  74. J. D. Hwang, C. Bhagavatula, R. Le Bras, J. Da, K. Sakaguchi, A. Bosselut, and Y. Choi, “(comet-) atomic 2020: On symbolic and neural commonsense knowledge graphs,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 7, 2021, pp. 6384–6392.
  75. H. Zhang, X. Liu, H. Pan, Y. Song, and C. W.-K. Leung, “Aser: A large-scale eventuality knowledge graph,” in Proceedings of the web conference 2020, 2020, pp. 201–211.
  76. H. Zhang, D. Khashabi, Y. Song, and D. Roth, “Transomcs: from linguistic graphs to commonsense knowledge,” in Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 4004–4010.
  77. Z. Li, X. Ding, T. Liu, J. E. Hu, and B. Van Durme, “Guided generation of cause and effect,” in Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 2020.
  78. O. Bodenreider, “The unified medical language system (umls): integrating biomedical terminology,” Nucleic acids research, vol. 32, no. suppl_1, pp. D267–D270, 2004.
  79. Y. Liu, Q. Zeng, J. Ordieres Meré, and H. Yang, “Anticipating stock market of the renowned companies: a knowledge graph approach,” Complexity, vol. 2019, 2019.
  80. Y. Zhu, W. Zhou, Y. Xu, J. Liu, Y. Tan et al., “Intelligent learning for knowledge graph towards geological data,” Scientific Programming, vol. 2017, 2017.
  81. W. Choi and H. Lee, “Inference of biomedical relations among chemicals, genes, diseases, and symptoms using knowledge representation learning,” IEEE Access, vol. 7, pp. 179 373–179 384, 2019.
  82. F. Farazi, M. Salamanca, S. Mosbach, J. Akroyd, A. Eibeck, L. K. Aditya, A. Chadzynski, K. Pan, X. Zhou, S. Zhang et al., “Knowledge graph approach to combustion chemistry and interoperability,” ACS omega, vol. 5, no. 29, pp. 18 342–18 348, 2020.
  83. X. Wu, T. Jiang, Y. Zhu, and C. Bu, “Knowledge graph for china’s genealogy,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 634–646, 2023.
  84. X. Zhu, Z. Li, X. Wang, X. Jiang, P. Sun, X. Wang, Y. Xiao, and N. J. Yuan, “Multi-modal knowledge graph construction and application: A survey,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  85. S. Ferrada, B. Bustos, and A. Hogan, “Imgpedia: a linked dataset with content-based analysis of wikimedia images,” in The Semantic Web–ISWC 2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II 16.   Springer, 2017, pp. 84–93.
  86. Y. Liu, H. Li, A. Garcia-Duran, M. Niepert, D. Onoro-Rubio, and D. S. Rosenblum, “Mmkg: multi-modal knowledge graphs,” in The Semantic Web: 16th International Conference, ESWC 2019, Portorož, Slovenia, June 2–6, 2019, Proceedings 16.   Springer, 2019, pp. 459–474.
  87. M. Wang, H. Wang, G. Qi, and Q. Zheng, “Richpedia: a large-scale, comprehensive multi-modal knowledge graph,” Big Data Research, vol. 22, p. 100159, 2020.
  88. B. Shi, L. Ji, P. Lu, Z. Niu, and N. Duan, “Knowledge aware semantic concept expansion for image-text matching.” in IJCAI, vol. 1, 2019, p. 2.
  89. S. Shah, A. Mishra, N. Yadati, and P. P. Talukdar, “Kvqa: Knowledge-aware visual question answering,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 8876–8884.
  90. R. Sun, X. Cao, Y. Zhao, J. Wan, K. Zhou, F. Zhang, Z. Wang, and K. Zheng, “Multi-modal knowledge graphs for recommender systems,” in Proceedings of the 29th ACM international conference on information & knowledge management, 2020, pp. 1405–1414.
  91. S. Deng, C. Wang, Z. Li, N. Zhang, Z. Dai, H. Chen, F. Xiong, M. Yan, Q. Chen, M. Chen, J. Chen, J. Z. Pan, B. Hooi, and H. Chen, “Construction and applications of billion-scale pre-trained multimodal business knowledge graph,” in ICDE.   IEEE, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2209.15214
  92. Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “ERNIE: Enhanced language representation with informative entities,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.   Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 1441–1451. [Online]. Available: https://aclanthology.org/P19-1139
  93. C. Rosset, C. Xiong, M. Phan, X. Song, P. Bennett, and S. Tiwary, “Knowledge-aware language model pretraining,” arXiv preprint arXiv:2007.00655, 2020.
  94. P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp tasks,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33.   Curran Associates, Inc., 2020, pp. 9459–9474. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
  95. B. Y. Lin, X. Chen, J. Chen, and X. Ren, “KagNet: Knowledge-aware graph networks for commonsense reasoning,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).   Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 2829–2839. [Online]. Available: https://aclanthology.org/D19-1282
  96. Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng, H. Chen, and N. Zhang, “Llms for knowledge graph construction and reasoning: Recent capabilities and future opportunities,” arXiv preprint arXiv:2305.13168, 2023.
  97. Z. Zhang, X. Liu, Y. Zhang, Q. Su, X. Sun, and B. He, “Pretrain-kge: learning knowledge representation from pretrained language models,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 259–266.
  98. A. Kumar, A. Pandey, R. Gadia, and M. Mishra, “Building knowledge graph using pre-trained language model for learning entity-aware relationships,” in 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON).   IEEE, 2020, pp. 310–315.
  99. X. Xie, N. Zhang, Z. Li, S. Deng, H. Chen, F. Xiong, M. Chen, and H. Chen, “From discrimination to generation: Knowledge graph completion with generative transformer,” in Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022, F. Laforest, R. Troncy, E. Simperl, D. Agarwal, A. Gionis, I. Herman, and L. Médini, Eds.   ACM, 2022, pp. 162–165. [Online]. Available: https://doi.org/10.1145/3487553.3524238
  100. Z. Chen, C. Xu, F. Su, Z. Huang, and Y. Dou, “Incorporating structured sentences with time-enhanced bert for fully-inductive temporal relation prediction,” SIGIR, 2023.
  101. D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.
  102. M. Warren, D. A. Shamma, and P. J. Hayes, “Knowledge engineering with image data in real-world settings,” in Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021, ser. CEUR Workshop Proceedings, A. Martin, K. Hinkelmann, H. Fill, A. Gerber, D. Lenat, R. Stolle, and F. van Harmelen, Eds., vol. 2846.   CEUR-WS.org, 2021. [Online]. Available: https://ceur-ws.org/Vol-2846/abstract1.pdf
  103. R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.
  104. Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu et al., “Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation,” arXiv preprint arXiv:2107.02137, 2021.
  105. H. Tian, C. Gao, X. Xiao, H. Liu, B. He, H. Wu, H. Wang, and F. Wu, “SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.   Online: Association for Computational Linguistics, Jul. 2020, pp. 4067–4076. [Online]. Available: https://aclanthology.org/2020.acl-main.374
  106. T. Shen, Y. Mao, P. He, G. Long, A. Trischler, and W. Chen, “Exploiting structured knowledge in text via graph-guided representation learning,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).   Online: Association for Computational Linguistics, Nov. 2020, pp. 8980–8994. [Online]. Available: https://aclanthology.org/2020.emnlp-main.722
  107. D. Zhang, Z. Yuan, Y. Liu, F. Zhuang, H. Chen, and H. Xiong, “E-bert: A phrase and product knowledge enhanced language model for e-commerce,” arXiv preprint arXiv:2009.02835, 2020.
  108. S. Li, X. Li, L. Shang, C. Sun, B. Liu, Z. Ji, X. Jiang, and Q. Liu, “Pre-training language models with deterministic factual knowledge,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.   Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 11 118–11 131. [Online]. Available: https://aclanthology.org/2022.emnlp-main.764
  109. M. Kang, J. Baek, and S. J. Hwang, “Kala: Knowledge-augmented language model adaptation,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022, pp. 5144–5167.
  110. W. Xiong, J. Du, W. Y. Wang, and V. Stoyanov, “Pretrained encyclopedia: Weakly supervised knowledge-pretrained language model,” in International Conference on Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?id=BJlzm64tDH
  111. T. Sun, Y. Shao, X. Qiu, Q. Guo, Y. Hu, X. Huang, and Z. Zhang, “CoLAKE: Contextualized language and knowledge embedding,” in Proceedings of the 28th International Conference on Computational Linguistics.   Barcelona, Spain (Online): International Committee on Computational Linguistics, Dec. 2020, pp. 3660–3670. [Online]. Available: https://aclanthology.org/2020.coling-main.327
  112. T. Zhang, C. Wang, N. Hu, M. Qiu, C. Tang, X. He, and J. Huang, “DKPLM: decomposable knowledge-enhanced pre-trained language model for natural language understanding,” in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.   AAAI Press, 2022, pp. 11 703–11 711. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/21425
  113. W. Yu, C. Zhu, Y. Fang, D. Yu, S. Wang, Y. Xu, M. Zeng, and M. Jiang, “Dict-BERT: Enhancing language model pre-training with dictionary,” in Findings of the Association for Computational Linguistics: ACL 2022.   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 1907–1918. [Online]. Available: https://aclanthology.org/2022.findings-acl.150
  114. B. He, D. Zhou, J. Xiao, X. Jiang, Q. Liu, N. J. Yuan, and T. Xu, “BERT-MK: Integrating graph contextualized knowledge into pre-trained language models,” in Findings of the Association for Computational Linguistics: EMNLP 2020.   Online: Association for Computational Linguistics, Nov. 2020, pp. 2281–2290. [Online]. Available: https://aclanthology.org/2020.findings-emnlp.207
  115. D. Yu, C. Zhu, Y. Yang, and M. Zeng, “JAKET: joint pre-training of knowledge graph and language understanding,” in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.   AAAI Press, 2022, pp. 11 630–11 638. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/21417
  116. R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, J. Ji, G. Cao, D. Jiang, and M. Zhou, “K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.   Online: Association for Computational Linguistics, Aug. 2021, pp. 1405–1418. [Online]. Available: https://aclanthology.org/2021.findings-acl.121
  117. Y. Su, X. Han, Z. Zhang, Y. Lin, P. Li, Z. Liu, J. Zhou, and M. Sun, “Cokebert: Contextual knowledge selection and embedding towards enhanced pre-trained language models,” AI Open, vol. 2, pp. 127–134, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666651021000188
  118. M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec, “QA-GNN: Reasoning with language models and knowledge graphs for question answering,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.   Online: Association for Computational Linguistics, Jun. 2021, pp. 535–546. [Online]. Available: https://aclanthology.org/2021.naacl-main.45
  119. Y. Sun, Q. Shi, L. Qi, and Y. Zhang, “JointLK: Joint reasoning with language models and knowledge graphs for commonsense question answering,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.   Seattle, United States: Association for Computational Linguistics, Jul. 2022, pp. 5049–5060. [Online]. Available: https://aclanthology.org/2022.naacl-main.372
  120. X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. D. Manning, and J. Leskovec, “Greaselm: Graph reasoning enhanced language models,” in International conference on learning representations, 2022.
  121. R. Logan, N. F. Liu, M. E. Peters, M. Gardner, and S. Singh, “Barack’s wife hillary: Using knowledge graphs for fact-aware language modeling,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.   Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 5962–5971. [Online]. Available: https://aclanthology.org/P19-1598
  122. K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “Realm: Retrieval-augmented language model pre-training,” in Proceedings of the 37th International Conference on Machine Learning, ser. ICML’20.   JMLR.org, 2020.
  123. D. Wilmot and F. Keller, “Memory and knowledge augmented language models for inferring salience in long-form stories,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.   Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 851–865. [Online]. Available: https://aclanthology.org/2021.emnlp-main.65
  124. Y. Wu, Y. Zhao, B. Hu, P. Minervini, P. Stenetorp, and S. Riedel, “An efficient memory-augmented transformer for knowledge-intensive NLP tasks,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.   Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 5184–5196. [Online]. Available: https://aclanthology.org/2022.emnlp-main.346
  125. Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what language models know?” Transactions of the Association for Computational Linguistics, vol. 8, pp. 423–438, 2020.
  126. T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, “Autoprompt: Eliciting knowledge from language models with automatically generated prompts,” arXiv preprint arXiv:2010.15980, 2020.
  127. L. Adolphs, S. Dhuliawala, and T. Hofmann, “How to query language models?” arXiv preprint arXiv:2108.01928, 2021.
  128. Z. Meng, F. Liu, E. Shareghi, Y. Su, C. Collins, and N. Collier, “Rewire-then-probe: A contrastive recipe for probing biomedical knowledge of pre-trained language models,” arXiv preprint arXiv:2110.08173, 2021.
  129. A. Mallen, A. Asai, V. Zhong, R. Das, H. Hajishirzi, and D. Khashabi, “When not to trust language models: Investigating effectiveness and limitations of parametric and non-parametric memories,” arXiv preprint arXiv:2212.10511, 2022.
  130. V. Swamy, A. Romanou, and M. Jaggi, “Interpreting language models through knowledge graph extraction,” arXiv preprint arXiv:2111.08546, 2021.
  131. S. Li, X. Li, L. Shang, Z. Dong, C. Sun, B. Liu, Z. Ji, X. Jiang, and Q. Liu, “How pre-trained language models capture factual knowledge? a causal-inspired analysis,” arXiv preprint arXiv:2203.16747, 2022.
  132. X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang, “KEPLER: A unified model for knowledge embedding and pre-trained language representation,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 176–194, 2021. [Online]. Available: https://aclanthology.org/2021.tacl-1.11
  133. T. McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.   Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 3428–3448. [Online]. Available: https://aclanthology.org/P19-1334
  134. X. Wang, P. Kapanipathi, R. Musa, M. Yu, K. Talamadupula, I. Abdelaziz, M. Chang, A. Fokoue, B. Makni, N. Mattei, and M. Witbrock, “Improving natural language inference using external knowledge in the science questions domain,” in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.   AAAI Press, 2019, pp. 7208–7215. [Online]. Available: https://doi.org/10.1609/aaai.v33i01.33017208
  135. Y. Feng, X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren, “Scalable multi-hop relational reasoning for knowledge-aware question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).   Online: Association for Computational Linguistics, Nov. 2020, pp. 1295–1309. [Online]. Available: https://aclanthology.org/2020.emnlp-main.99
  136. M. Sung, J. Lee, S. Yi, M. Jeon, S. Kim, and J. Kang, “Can language models be biomedical knowledge bases?” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 4723–4734.
  137. M. Nayyeri, Z. Wang, M. Akter, M. M. Alam, M. R. A. H. Rony, J. Lehmann, S. Staab et al., “Integrating knowledge graph embedding and pretrained language models in hypercomplex spaces,” arXiv preprint arXiv:2208.02743, 2022.
  138. N. Huang, Y. R. Deshpande, Y. Liu, H. Alberts, K. Cho, C. Vania, and I. Calixto, “Endowing language models with multimodal knowledge graph representations,” arXiv preprint arXiv:2206.13163, 2022.
  139. M. M. Alam, M. R. A. H. Rony, M. Nayyeri, K. Mohiuddin, M. M. Akter, S. Vahdati, and J. Lehmann, “Language model guided knowledge graph embeddings,” IEEE Access, vol. 10, pp. 76 008–76 020, 2022.
  140. X. Wang, Q. He, J. Liang, and Y. Xiao, “Language models as knowledge embeddings,” arXiv preprint arXiv:2206.12617, 2022.
  141. N. Zhang, X. Xie, X. Chen, S. Deng, C. Tan, F. Huang, X. Cheng, and H. Chen, “Reasoning through memorization: Nearest neighbor knowledge graph embeddings,” arXiv preprint arXiv:2201.05575, 2022.
  142. X. Xie, Z. Li, X. Wang, Y. Zhu, N. Zhang, J. Zhang, S. Cheng, B. Tian, S. Deng, F. Xiong, and H. Chen, “Lambdakg: A library for pre-trained language model-based knowledge graph embeddings,” 2022.
  143. B. Kim, T. Hong, Y. Ko, and J. Seo, “Multi-task learning for knowledge graph completion with pre-trained language models,” in Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, D. Scott, N. Bel, and C. Zong, Eds.   International Committee on Computational Linguistics, 2020, pp. 1737–1743. [Online]. Available: https://doi.org/10.18653/v1/2020.coling-main.153
  144. X. Lv, Y. Lin, Y. Cao, L. Hou, J. Li, Z. Liu, P. Li, and J. Zhou, “Do pre-trained models benefit knowledge graph completion? A reliable evaluation and a reasonable approach,” in Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 3570–3581. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-acl.282
  145. J. Shen, C. Wang, L. Gong, and D. Song, “Joint language semantic and structure embedding for knowledge graph completion,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds.   International Committee on Computational Linguistics, 2022, pp. 1965–1978. [Online]. Available: https://aclanthology.org/2022.coling-1.171
  146. B. Choi, D. Jang, and Y. Ko, “MEM-KGC: masked entity model for knowledge graph completion with pre-trained language model,” IEEE Access, vol. 9, pp. 132 025–132 032, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3113329
  147. B. Choi and Y. Ko, “Knowledge graph extension with a pre-trained language model via unified learning method,” Knowl. Based Syst., vol. 262, p. 110245, 2023. [Online]. Available: https://doi.org/10.1016/j.knosys.2022.110245
  148. B. Wang, T. Shen, G. Long, T. Zhou, Y. Wang, and Y. Chang, “Structure-augmented text representation learning for efficient knowledge graph completion,” in WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, Eds.   ACM / IW3C2, 2021, pp. 1737–1748. [Online]. Available: https://doi.org/10.1145/3442381.3450043
  149. L. Wang, W. Zhao, Z. Wei, and J. Liu, “Simkgc: Simple contrastive knowledge graph completion with pre-trained language models,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 4281–4294. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.295
  150. D. Li, M. Yi, and Y. He, “Lp-bert: Multi-task pre-training knowledge graph bert for link prediction,” arXiv preprint arXiv:2201.04843, 2022.
  151. A. Saxena, A. Kochsiek, and R. Gemulla, “Sequence-to-sequence knowledge graph completion and question answering,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 2814–2828. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.201
  152. C. Chen, Y. Wang, B. Li, and K. Lam, “Knowledge is flat: A seq2seq generative framework for various knowledge graph completion,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds.   International Committee on Computational Linguistics, 2022, pp. 4005–4017. [Online]. Available: https://aclanthology.org/2022.coling-1.352
  153. Y. Onoe and G. Durrett, “Learning to denoise distantly-labeled data for entity typing,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.   Association for Computational Linguistics, 2019, pp. 2407–2417. [Online]. Available: https://doi.org/10.18653/v1/n19-1250
  154. Y. Onoe, M. Boratko, A. McCallum, and G. Durrett, “Modeling fine-grained entity types with box embeddings,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 2051–2064. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.160
  155. Q. Liu, H. Lin, X. Xiao, X. Han, L. Sun, and H. Wu, “Fine-grained entity typing via label reasoning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 4611–4622. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.378
  156. K. Zaporojets, L. Kaffee, J. Deleu, T. Demeester, C. Develder, and I. Augenstein, “Tempel: Linking dynamically evolving and newly emerging entities,” CoRR, vol. abs/2302.02500, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.02500
  157. M. Joshi, O. Levy, L. Zettlemoyer, and D. S. Weld, “BERT for coreference resolution: Baselines and analysis,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds.   Association for Computational Linguistics, 2019, pp. 5802–5807. [Online]. Available: https://doi.org/10.18653/v1/D19-1588
  158. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert: Improving pre-training by representing and predicting spans,” Trans. Assoc. Comput. Linguistics, vol. 8, pp. 64–77, 2020. [Online]. Available: https://doi.org/10.1162/tacl_a_00300
  159. A. Caciularu, A. Cohan, I. Beltagy, M. E. Peters, A. Cattan, and I. Dagan, “CDLM: cross-document language modeling,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 2648–2662. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.225
  160. A. Cattan, A. Eirew, G. Stanovsky, M. Joshi, and I. Dagan, “Cross-document coreference resolution over predicted mentions,” in Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, ser. Findings of ACL, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol. ACL/IJCNLP 2021.   Association for Computational Linguistics, 2021, pp. 5100–5107. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-acl.453
  161. Y. Wang, Y. Shen, and H. Jin, “An end-to-end actor-critic-based neural coreference resolution system,” in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021.   IEEE, 2021, pp. 7848–7852. [Online]. Available: https://doi.org/10.1109/ICASSP39728.2021.9413579
  162. P. Shi and J. Lin, “Simple BERT models for relation extraction and semantic role labeling,” CoRR, vol. abs/1904.05255, 2019. [Online]. Available: http://arxiv.org/abs/1904.05255
  163. S. Park and H. Kim, “Improving sentence-level relation extraction through curriculum learning,” CoRR, vol. abs/2107.09332, 2021. [Online]. Available: https://arxiv.org/abs/2107.09332
  164. Y. Ma, A. Wang, and N. Okazaki, “DREEAM: guiding attention with evidence for improving document-level relation extraction,” in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, A. Vlachos and I. Augenstein, Eds.   Association for Computational Linguistics, 2023, pp. 1963–1975. [Online]. Available: https://aclanthology.org/2023.eacl-main.145
  165. Q. Guo, Y. Sun, G. Liu, Z. Wang, Z. Ji, Y. Shen, and X. Wang, “Constructing chinese historical literature knowledge graph based on bert,” in Web Information Systems and Applications: 18th International Conference, WISA 2021, Kaifeng, China, September 24–26, 2021, Proceedings 18.   Springer, 2021, pp. 323–334.
  166. J. Han, N. Collier, W. Buntine, and E. Shareghi, “Pive: Prompting with iterative verification improving graph-based generative capability of llms,” arXiv preprint arXiv:2305.12392, 2023.
  167. A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and Y. Choi, “Comet: Commonsense transformers for knowledge graph construction,” in Association for Computational Linguistics (ACL), 2019.
  168. S. Hao, B. Tan, K. Tang, H. Zhang, E. P. Xing, and Z. Hu, “Bertnet: Harvesting knowledge graphs from pretrained language models,” arXiv preprint arXiv:2206.14268, 2022.
  169. P. West, C. Bhagavatula, J. Hessel, J. Hwang, L. Jiang, R. Le Bras, X. Lu, S. Welleck, and Y. Choi, “Symbolic knowledge distillation: from general language models to commonsense models,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022, pp. 4602–4625.
  170. L. F. R. Ribeiro, M. Schmitt, H. Schütze, and I. Gurevych, “Investigating pretrained language models for graph-to-text generation,” in Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI.   Online: Association for Computational Linguistics, Nov. 2021, pp. 211–227. [Online]. Available: https://aclanthology.org/2021.nlp4convai-1.20
  171. J. Li, T. Tang, W. X. Zhao, Z. Wei, N. J. Yuan, and J.-R. Wen, “Few-shot knowledge graph-to-text generation with pretrained language models,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.   Online: Association for Computational Linguistics, Aug. 2021, pp. 1558–1568. [Online]. Available: https://aclanthology.org/2021.findings-acl.136
  172. A. Colas, M. Alvandipour, and D. Z. Wang, “GAP: A graph-aware language model framework for knowledge graph-to-text generation,” in Proceedings of the 29th International Conference on Computational Linguistics.   Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 5755–5769. [Online]. Available: https://aclanthology.org/2022.coling-1.506
  173. Z. Jin, Q. Guo, X. Qiu, and Z. Zhang, “GenWiki: A dataset of 1.3 million content-sharing text and graphs for unsupervised graph-to-text generation,” in Proceedings of the 28th International Conference on Computational Linguistics.   Barcelona, Spain (Online): International Committee on Computational Linguistics, Dec. 2020, pp. 2398–2409. [Online]. Available: https://aclanthology.org/2020.coling-main.217
  174. W. Chen, Y. Su, X. Yan, and W. Y. Wang, “KGPT: Knowledge-grounded pre-training for data-to-text generation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).   Online: Association for Computational Linguistics, Nov. 2020, pp. 8635–8648. [Online]. Available: https://aclanthology.org/2020.emnlp-main.697
  175. D. Luo, J. Su, and S. Yu, “A bert-based approach with relation-aware attention for knowledge base question answering,” in 2020 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2020, pp. 1–8.
  176. D. Lukovnikov, A. Fischer, and J. Lehmann, “Pretrained transformers for simple question answering over knowledge graphs,” in The Semantic Web–ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part I 18.   Springer, 2019, pp. 470–486.
  177. N. Hu, Y. Wu, G. Qi, D. Min, J. Chen, J. Z. Pan, and Z. Ali, “An empirical study of pre-trained language models in simple knowledge graph question answering,” arXiv preprint arXiv:2303.10368, 2023.
  178. Y. Xu, C. Zhu, R. Xu, Y. Liu, M. Zeng, and X. Huang, “Fusing context into knowledge graph for commonsense question answering,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 1201–1207.
  179. M. Zhang, R. Dai, M. Dong, and T. He, “Drlk: Dynamic hierarchical reasoning with language model and knowledge graph for question answering,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022, pp. 5123–5133.
  180. Z. Hu, Y. Xu, W. Yu, S. Wang, Z. Yang, C. Zhu, K.-W. Chang, and Y. Sun, “Empowering language models with knowledge graph reasoning for open-domain question answering,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022, pp. 9562–9581.
  181. X. Cao and Y. Liu, “Relmkg: reasoning with pre-trained language models and knowledge graphs for complex question answering,” Applied Intelligence, pp. 1–15, 2022.
  182. X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding based question answering,” in Proceedings of the twelfth ACM international conference on web search and data mining, 2019, pp. 105–113.
  183. H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware network for news recommendation,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1835–1844.
  184. B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations for learning and inference in knowledge bases,” in Proceedings of the International Conference on Learning Representations (ICLR) 2015, 2015.
  185. W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang, “One-shot relational learning for knowledge graphs,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 1980–1990.
  186. P. Wang, J. Han, C. Li, and R. Pan, “Logic attention based neighborhood aggregation for inductive knowledge graph embedding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 7152–7159.
  187. Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for knowledge graph completion,” in Proceedings of the AAAI conference on artificial intelligence, vol. 29, no. 1, 2015.
  188. C. Chen, Y. Wang, A. Sun, B. Li, and L. Kwok-Yan, “Dipping plms sauce: Bridging structure and text for effective knowledge graph completion via conditional soft prompting,” in Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics, 2023.
  189. J. Lovelace and C. P. Rosé, “A framework for adapting pre-trained language models to knowledge graph completion,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 5937–5955. [Online]. Available: https://aclanthology.org/2022.emnlp-main.398
  190. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds.   Association for Computational Linguistics, 2018, pp. 2227–2237. [Online]. Available: https://doi.org/10.18653/v1/n18-1202
  191. J. Fu, L. Feng, Q. Zhang, X. Huang, and P. Liu, “Larger-context tagging: When and why does it work?” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.   Association for Computational Linguistics, 2021, pp. 1463–1475. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.115
  192. X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang, “P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks,” CoRR, vol. abs/2110.07602, 2021. [Online]. Available: https://arxiv.org/abs/2110.07602
  193. J. Yu, B. Bohnet, and M. Poesio, “Named entity recognition as dependency parsing,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.   Association for Computational Linguistics, 2020, pp. 6470–6476. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.577
  194. F. Li, Z. Lin, M. Zhang, and D. Ji, “A span-based model for joint overlapped and discontinuous named entity recognition,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 4814–4828. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.372
  195. C. Tan, W. Qiu, M. Chen, R. Wang, and F. Huang, “Boundary enhanced neural span classification for nested named entity recognition,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.   AAAI Press, 2020, pp. 9016–9023. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6434
  196. Y. Xu, H. Huang, C. Feng, and Y. Hu, “A supervised multi-head self-attention network for nested named entity recognition,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 14 185–14 193. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/17669
  197. J. Yu, B. Ji, S. Li, J. Ma, H. Liu, and H. Xu, “S-NER: A concise and efficient span-based model for named entity recognition,” Sensors, vol. 22, no. 8, p. 2852, 2022. [Online]. Available: https://doi.org/10.3390/s22082852
  198. Y. Fu, C. Tan, M. Chen, S. Huang, and F. Huang, “Nested named entity recognition with partially-observed treecrfs,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 12 839–12 847. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/17519
  199. C. Lou, S. Yang, and K. Tu, “Nested named entity recognition as latent lexicalized constituency parsing,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 6183–6198. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.428
  200. S. Yang and K. Tu, “Bottom-up constituency parsing and nested named entity recognition with pointer networks,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 2403–2416. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.171
  201. H. Yan, T. Gui, J. Dai, Q. Guo, Z. Zhang, and X. Qiu, “A unified generative framework for various NER subtasks,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 5808–5822. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.451
  202. H. Dai, Y. Song, and H. Wang, “Ultra-fine entity typing with weak supervision from a masked language model,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 1790–1799. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.141
  203. N. Ding, Y. Chen, X. Han, G. Xu, X. Wang, P. Xie, H. Zheng, Z. Liu, J. Li, and H. Kim, “Prompt-learning for fine-grained entity typing,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 6888–6901. [Online]. Available: https://aclanthology.org/2022.findings-emnlp.512
  204. W. Pan, W. Wei, and F. Zhu, “Automatic noisy label correction for fine-grained entity typing,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, L. D. Raedt, Ed.   ijcai.org, 2022, pp. 4317–4323. [Online]. Available: https://doi.org/10.24963/ijcai.2022/599
  205. B. Li, W. Yin, and M. Chen, “Ultra-fine entity typing with indirect supervision from natural language inference,” Trans. Assoc. Comput. Linguistics, vol. 10, pp. 607–622, 2022. [Online]. Available: https://doi.org/10.1162/tacl_a_00479
  206. S. Broscheit, “Investigating entity knowledge in BERT with simple neural end-to-end entity linking,” CoRR, vol. abs/2003.05473, 2020. [Online]. Available: https://arxiv.org/abs/2003.05473
  207. B. Z. Li, S. Min, S. Iyer, Y. Mehdad, and W. Yih, “Efficient one-pass end-to-end entity linking for questions,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.   Association for Computational Linguistics, 2020, pp. 6433–6441. [Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.522
  208. N. D. Cao, G. Izacard, S. Riedel, and F. Petroni, “Autoregressive entity retrieval,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=5k8F6UU39V
  209. N. D. Cao, L. Wu, K. Popat, M. Artetxe, N. Goyal, M. Plekhanov, L. Zettlemoyer, N. Cancedda, S. Riedel, and F. Petroni, “Multilingual autoregressive entity linking,” Trans. Assoc. Comput. Linguistics, vol. 10, pp. 274–290, 2022. [Online]. Available: https://doi.org/10.1162/tacl_a_00460
  210. N. D. Cao, W. Aziz, and I. Titov, “Highly parallel autoregressive entity linking with discriminative correction,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 7662–7669. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.604
  211. T. Ayoola, S. Tyagi, J. Fisher, C. Christodoulopoulos, and A. Pierleoni, “Refined: An efficient zero-shot-capable approach to end-to-end entity linking,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, NAACL 2022, Hybrid: Seattle, Washington, USA + Online, July 10-15, 2022, A. Loukina, R. Gangadharaiah, and B. Min, Eds.   Association for Computational Linguistics, 2022, pp. 209–220. [Online]. Available: https://doi.org/10.18653/v1/2022.naacl-industry.24
  212. K. Lee, L. He, and L. Zettlemoyer, “Higher-order coreference resolution with coarse-to-fine inference,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), M. A. Walker, H. Ji, and A. Stent, Eds.   Association for Computational Linguistics, 2018, pp. 687–692. [Online]. Available: https://doi.org/10.18653/v1/n18-2108
  213. T. M. Lai, T. Bui, and D. S. Kim, “End-to-end neural coreference resolution revisited: A simple yet effective baseline,” in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022, Virtual and Singapore, 23-27 May 2022.   IEEE, 2022, pp. 8147–8151. [Online]. Available: https://doi.org/10.1109/ICASSP43922.2022.9746254
  214. W. Wu, F. Wang, A. Yuan, F. Wu, and J. Li, “Corefqa: Coreference resolution as query-based span prediction,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.   Association for Computational Linguistics, 2020, pp. 6953–6963. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.622
  215. T. M. Lai, H. Ji, T. Bui, Q. H. Tran, F. Dernoncourt, and W. Chang, “A context-dependent gated module for incorporating symbolic semantics into event coreference resolution,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.   Association for Computational Linguistics, 2021, pp. 3491–3499. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.274
  216. Y. Kirstain, O. Ram, and O. Levy, “Coreference resolution without span representations,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 14–19. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-short.3
  217. R. Thirukovalluru, N. Monath, K. Shridhar, M. Zaheer, M. Sachan, and A. McCallum, “Scaling within document coreference to long texts,” in Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, ser. Findings of ACL, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol. ACL/IJCNLP 2021.   Association for Computational Linguistics, 2021, pp. 3921–3931. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-acl.343
  218. I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,” CoRR, vol. abs/2004.05150, 2020. [Online]. Available: https://arxiv.org/abs/2004.05150
  219. C. Alt, M. Hübner, and L. Hennig, “Improving relation extraction by pre-trained language representations,” in 1st Conference on Automated Knowledge Base Construction, AKBC 2019, Amherst, MA, USA, May 20-22, 2019, 2019. [Online]. Available: https://doi.org/10.24432/C5KW2W
  220. L. B. Soares, N. FitzGerald, J. Ling, and T. Kwiatkowski, “Matching the blanks: Distributional similarity for relation learning,” in Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, A. Korhonen, D. R. Traum, and L. Màrquez, Eds.   Association for Computational Linguistics, 2019, pp. 2895–2905. [Online]. Available: https://doi.org/10.18653/v1/p19-1279
  221. S. Lyu and H. Chen, “Relation classification with entity type restriction,” in Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, ser. Findings of ACL, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol. ACL/IJCNLP 2021.   Association for Computational Linguistics, 2021, pp. 390–395. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-acl.34
  222. J. Zheng and Z. Chen, “Sentence-level relation extraction via contrastive learning with descriptive relation prompts,” CoRR, vol. abs/2304.04935, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2304.04935
  223. H. Wang, C. Focke, R. Sylvester, N. Mishra, and W. Y. Wang, “Fine-tune bert for docred with two-step process,” CoRR, vol. abs/1909.11898, 2019. [Online]. Available: http://arxiv.org/abs/1909.11898
  224. H. Tang, Y. Cao, Z. Zhang, J. Cao, F. Fang, S. Wang, and P. Yin, “HIN: hierarchical inference network for document-level relation extraction,” in Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part I, ser. Lecture Notes in Computer Science, H. W. Lauw, R. C. Wong, A. Ntoulas, E. Lim, S. Ng, and S. J. Pan, Eds., vol. 12084.   Springer, 2020, pp. 197–209. [Online]. Available: https://doi.org/10.1007/978-3-030-47426-3_16
  225. D. Wang, W. Hu, E. Cao, and W. Sun, “Global-to-local neural networks for document-level relation extraction,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.   Association for Computational Linguistics, 2020, pp. 3711–3721. [Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.303
  226. S. Zeng, Y. Wu, and B. Chang, “SIRE: separate intra- and inter-sentential reasoning for document-level relation extraction,” in Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, ser. Findings of ACL, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol. ACL/IJCNLP 2021.   Association for Computational Linguistics, 2021, pp. 524–534. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-acl.47
  227. G. Nan, Z. Guo, I. Sekulic, and W. Lu, “Reasoning with latent structure refinement for document-level relation extraction,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.   Association for Computational Linguistics, 2020, pp. 1546–1557. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.141
  228. S. Zeng, R. Xu, B. Chang, and L. Li, “Double graph based reasoning for document-level relation extraction,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.   Association for Computational Linguistics, 2020, pp. 1630–1640. [Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.127
  229. N. Zhang, X. Chen, X. Xie, S. Deng, C. Tan, M. Chen, F. Huang, L. Si, and H. Chen, “Document-level relation extraction as semantic segmentation,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, Z. Zhou, Ed.   ijcai.org, 2021, pp. 3999–4006. [Online]. Available: https://doi.org/10.24963/ijcai.2021/551
  230. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, ser. Lecture Notes in Computer Science, N. Navab, J. Hornegger, W. M. W. III, and A. F. Frangi, Eds., vol. 9351.   Springer, 2015, pp. 234–241. [Online]. Available: https://doi.org/10.1007/978-3-319-24574-4_28
  231. W. Zhou, K. Huang, T. Ma, and J. Huang, “Document-level relation extraction with adaptive thresholding and localized context pooling,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 14 612–14 620. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/17717
  232. C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini, “The WebNLG challenge: Generating text from RDF data,” in Proceedings of the 10th International Conference on Natural Language Generation.   Santiago de Compostela, Spain: Association for Computational Linguistics, Sep. 2017, pp. 124–133. [Online]. Available: https://aclanthology.org/W17-3518
  233. J. Guan, Y. Wang, and M. Huang, “Story ending generation with incremental encoding and commonsense knowledge,” in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.   AAAI Press, 2019, pp. 6473–6480. [Online]. Available: https://doi.org/10.1609/aaai.v33i01.33016473
  234. H. Zhou, T. Young, M. Huang, H. Zhao, J. Xu, and X. Zhu, “Commonsense knowledge aware conversation generation with graph attention,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, J. Lang, Ed.   ijcai.org, 2018, pp. 4623–4629. [Online]. Available: https://doi.org/10.24963/ijcai.2018/643
  235. M. Kale and A. Rastogi, “Text-to-text pre-training for data-to-text tasks,” in Proceedings of the 13th International Conference on Natural Language Generation.   Dublin, Ireland: Association for Computational Linguistics, Dec. 2020, pp. 97–102. [Online]. Available: https://aclanthology.org/2020.inlg-1.14
  236. M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction without labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.   Suntec, Singapore: Association for Computational Linguistics, Aug. 2009, pp. 1003–1011. [Online]. Available: https://aclanthology.org/P09-1113
  237. A. Saxena, A. Tripathi, and P. Talukdar, “Improving multi-hop question answering over knowledge graphs using knowledge base embeddings,” in Proceedings of the 58th annual meeting of the association for computational linguistics, 2020, pp. 4498–4507.
  238. Y. Feng, X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren, “Scalable multi-hop relational reasoning for knowledge-aware question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 1295–1309.
  239. Y. Yan, R. Li, S. Wang, H. Zhang, Z. Daoguang, F. Zhang, W. Wu, and W. Xu, “Large-scale relation learning for question answering over knowledge bases with pre-trained language models,” in Proceedings of the 2021 conference on empirical methods in natural language processing, 2021, pp. 3653–3660.
  240. J. Zhang, X. Zhang, J. Yu, J. Tang, J. Tang, C. Li, and H. Chen, “Subgraph retrieval enhanced model for multi-hop knowledge base question answering,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 5773–5784.
  241. J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, and J.-R. Wen, “Structgpt: A general framework for large language model to reason over structured data,” arXiv preprint arXiv:2305.09645, 2023.
  242. H. Zhu, H. Peng, Z. Lyu, L. Hou, J. Li, and J. Xiao, “Pre-training language model incorporating domain-specific heterogeneous knowledge into a unified representation,” Expert Systems with Applications, vol. 215, p. 119369, 2023.
  243. L. Wang, H. Hu, L. Sha, C. Xu, D. Jiang, and K.-F. Wong, “Recindial: A unified framework for conversational recommendation with pretrained language models,” in Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, 2022, pp. 489–500.
  244. R. Ding, X. Han, and L. Wang, “A unified knowledge graph service for developing domain language models in ai software,” arXiv preprint arXiv:2212.05251, 2022.
  245. T. Y. Zhuo, Y. Huang, C. Chen, and Z. Xing, “Exploring AI ethics of chatgpt: A diagnostic analysis,” CoRR, vol. abs/2301.12867, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2301.12867
  246. W. Kryściński, B. McCann, C. Xiong, and R. Socher, “Evaluating the factual consistency of abstractive text summarization,” arXiv preprint arXiv:1910.12840, 2019.
  247. Z. Ji, Z. Liu, N. Lee, T. Yu, B. Wilie, M. Zeng, and P. Fung, “Rho (\ρ\absent𝜌\backslash\rho\ italic_ρ): Reducing hallucination in open-domain dialogues with knowledge grounding,” arXiv preprint arXiv:2212.01588, 2022.
  248. S. Feng, V. Balachandran, Y. Bai, and Y. Tsvetkov, “Factkb: Generalizable factuality evaluation using language models enhanced with factual knowledge,” arXiv preprint arXiv:2305.08281, 2023.
  249. Q. Dong, D. Dai, Y. Song, J. Xu, Z. Sui, and L. Li, “Calibrating factual knowledge in pretrained language models,” arXiv preprint arXiv:2210.03329, 2022.
  250. E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning, “Fast model editing at scale,” arXiv preprint arXiv:2110.11309, 2021.
  251. K. Meng, A. S. Sharma, A. Andonian, Y. Belinkov, and D. Bau, “Mass-editing memory in a transformer,” arXiv preprint arXiv:2210.07229, 2022.
  252. S. Cheng, N. Zhang, B. Tian, Z. Dai, F. Xiong, W. Guo, and H. Chen, “Editing language model-based knowledge graph embeddings,” arXiv preprint arXiv:2301.10405, 2023.
  253. S. Chen, Y. Hou, Y. Cui, W. Che, T. Liu, and X. Yu, “Recall and learn: Fine-tuning deep pretrained language models with less forgetting,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 7870–7881.
  254. S. Diao, Z. Huang, R. Xu, X. Li, Y. Lin, X. Zhou, and T. Zhang, “Black-box prompt learning for pre-trained language models,” arXiv preprint arXiv:2201.08531, 2022.
  255. T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu, “Black-box tuning for language-model-as-a-service,” in International Conference on Machine Learning.   PMLR, 2022, pp. 20 841–20 855.
  256. X. Chen, A. Shrivastava, and A. Gupta, “NEIL: extracting visual knowledge from web data,” in IEEE International Conference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013.   IEEE Computer Society, 2013, pp. 1409–1416. [Online]. Available: https://doi.org/10.1109/ICCV.2013.178
  257. M. Warren and P. J. Hayes, “Bounding ambiguity: Experiences with an image annotation system,” in Proceedings of the 1st Workshop on Subjectivity, Ambiguity and Disagreement in Crowdsourcing, and Short Paper Proceedings of the 1st Workshop on Disentangling the Relation Between Crowdsourcing and Bias Management (SAD 2018 and CrowdBias 2018) co-located the 6th AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2018), Zürich, Switzerland, July 5, 2018, ser. CEUR Workshop Proceedings, L. Aroyo, A. Dumitrache, P. K. Paritosh, A. J. Quinn, C. Welty, A. Checco, G. Demartini, U. Gadiraju, and C. Sarasua, Eds., vol. 2276.   CEUR-WS.org, 2018, pp. 41–54. [Online]. Available: https://ceur-ws.org/Vol-2276/paper5.pdf
  258. Z. Chen, Y. Huang, J. Chen, Y. Geng, Y. Fang, J. Z. Pan, N. Zhang, and W. Zhang, “Lako: Knowledge-driven visual estion answering via late knowledge-to-text injection,” 2022.
  259. R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin, and I. Misra, “Imagebind: One embedding space to bind them all,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 15 180–15 190.
  260. J. Zhang, Z. Yin, P. Chen, and S. Nichele, “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review,” Information Fusion, vol. 59, pp. 103–126, 2020.
  261. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
  262. T. Wu, M. Caccia, Z. Li, Y.-F. Li, G. Qi, and G. Haffari, “Pretrained language model in continual learning: A comparative study,” in International Conference on Learning Representations, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Shirui Pan (197 papers)
  2. Linhao Luo (31 papers)
  3. Yufei Wang (141 papers)
  4. Chen Chen (752 papers)
  5. Jiapu Wang (9 papers)
  6. Xindong Wu (49 papers)
Citations (535)
Youtube Logo Streamline Icon: https://streamlinehq.com