Discrete dynamics in the set of quantum measurements (2308.05835v2)
Abstract: A quantum measurement, often referred to as positive operator-valued measurement (POVM), is a set of positive operators $P_j=P_j\dag\geq 0$ summing to identity, $\sum_jP_j=\mathbb{1}$. This can be seen as a generalization of a probability distribution of positive real numbers summing to unity, whose evolution is given by a stochastic matrix. We describe discrete transformations in the set of quantum measurements by {\em blockwise stochastic matrices}, composed of positive blocks that sum columnwise to identity, using the notion of {\em sequential product} of matrices. We show that such transformations correspond to a sequence of quantum measurements. Imposing additionally the dual condition that the sum of blocks in each row is equal to identity, we arrive at blockwise bistochastic matrices (also called {\em quantum magic squares}). Analyzing their dynamical properties, we formulate our main result: a quantum analog of the Ostrowski description of the classical Birkhoff polytope, which introduces the notion of majorization between quantum measurements. Our framework provides a dynamical characterization of the set of blockwise bistochastic matrices and establishes a resource theory in this set.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.