Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution (2308.04708v1)

Published 9 Aug 2023 in cs.LG and cs.AI

Abstract: We address the task of probabilistic anomaly attribution in the black-box regression setting, where the goal is to compute the probability distribution of the attribution score of each input variable, given an observed anomaly. The training dataset is assumed to be unavailable. This task differs from the standard XAI (explainable AI) scenario, since we wish to explain the anomalous deviation from a black-box prediction rather than the black-box model itself. We begin by showing that mainstream model-agnostic explanation methods, such as the Shapley values, are not suitable for this task because of their ``deviation-agnostic property.'' We then propose a novel framework for probabilistic anomaly attribution that allows us to not only compute attribution scores as the predictive mean but also quantify the uncertainty of those scores. This is done by considering a generative process for perturbations that counter-factually bring the observed anomalous observation back to normalcy. We introduce a variational Bayes algorithm for deriving the distributions of per variable attribution scores. To the best of our knowledge, this is the first probabilistic anomaly attribution framework that is free from being deviation-agnostic.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.