Exact Separation of Eigenvalues of Large Dimensional Noncentral Sample Covariance Matrices
Abstract: Let $ \bbB_n =\frac{1}{n}(\bbR_n + \bbT{1/2}_n \bbX_n)(\bbR_n + \bbT{1/2}_n \bbX_n)* $ where $ \bbX_n $ is a $ p \times n $ matrix with independent standardized random variables, $ \bbR_n $ is a $ p \times n $ non-random matrix, representing the information, and $ \bbT_{n} $ is a $ p \times p $ non-random nonnegative definite Hermitian matrix. Under some conditions on $ \bbR_n \bbR_n* $ and $ \bbT_n $, it has been proved that for any closed interval outside the support of the limit spectral distribution, with probability one there will be no eigenvalues falling in this interval for all $ p $ sufficiently large. The purpose of this paper is to carry on with the study of the support of the limit spectral distribution, and we show that there is an exact separation phenomenon: with probability one, the proper number of eigenvalues lie on either side of these intervals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.