Quantum speedups for stochastic optimization (2308.01582v2)
Abstract: We consider the problem of minimizing a continuous function given quantum access to a stochastic gradient oracle. We provide two new methods for the special case of minimizing a Lipschitz convex function. Each method obtains a dimension versus accuracy trade-off which is provably unachievable classically and we prove that one method is asymptotically optimal in low-dimensional settings. Additionally, we provide quantum algorithms for computing a critical point of a smooth non-convex function at rates not known to be achievable classically. To obtain these results we build upon the quantum multivariate mean estimation result of Cornelissen et al. 2022 and provide a general quantum-variance reduction technique of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.