Papers
Topics
Authors
Recent
2000 character limit reached

Black Holes as Fermion Factories (2308.00741v4)

Published 1 Aug 2023 in hep-ph, astro-ph.CO, astro-ph.HE, gr-qc, and hep-ex

Abstract: Ultralight bosons near rotating black holes can undergo significant growth through superradiant energy extraction, potentially reaching field values close to the Planck scale and transforming black holes into effective transducers for these fields. The interaction between boson fields and fermions may lead to parametric production or Schwinger pair production of fermions, with efficiencies significantly exceeding those of perturbative decay processes. Additionally, the spatial gradients of scalar clouds and the electric components of vector clouds can accelerate fermions, resulting in observable fluxes. This study considers both Standard Model neutrinos and dark sector fermions, which could contribute to boosted dark matter. Energy loss due to fermion emissions can potentially quench the exponential growth of the cloud, leading to a saturated state. This dynamic provides a framework for establishing limits on boson-neutrino interactions, previously constrained by neutrino self-interaction considerations. In the saturation phase, boson clouds have the capacity to accelerate fermions to TeV energies, producing fluxes that surpass those from atmospheric neutrinos near black holes. These fluxes open new avenues for observations through high-energy neutrino detectors like IceCube, as well as through dark matter direct detection efforts focused on targeted black holes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (163)
  1. R. D. Peccei and Helen R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38, 1440–1443 (1977).
  2. Wayne Hu, Rennan Barkana,  and Andrei Gruzinov, “Cold and fuzzy dark matter,” Phys. Rev. Lett. 85, 1158–1161 (2000), arXiv:astro-ph/0003365 .
  3. R. Penrose and R. M. Floyd, “Extraction of rotational energy from a black hole,” Nature 229, 177–179 (1971).
  4. Ya. B. Zel’Dovich, “Generation of Waves by a Rotating Body,” Soviet Journal of Experimental and Theoretical Physics Letters 14, 180 (1971).
  5. Richard Brito, Vitor Cardoso,  and Paolo Pani, “Superradiance: New Frontiers in Black Hole Physics,” Lect. Notes Phys. 906, pp.1–237 (2015a), arXiv:1501.06570 [gr-qc] .
  6. Steven L. Detweiler, “KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES,” Phys. Rev. D 22, 2323–2326 (1980).
  7. Vitor Cardoso and Shijun Yoshida, “Superradiant instabilities of rotating black branes and strings,” JHEP 07, 009 (2005), arXiv:hep-th/0502206 .
  8. Sam R. Dolan, “Instability of the massive Klein-Gordon field on the Kerr spacetime,” Phys. Rev. D 76, 084001 (2007), arXiv:0705.2880 [gr-qc] .
  9. Richard Brito, Vitor Cardoso,  and Paolo Pani, “Black holes as particle detectors: evolution of superradiant instabilities,” Class. Quant. Grav. 32, 134001 (2015b), arXiv:1411.0686 [gr-qc] .
  10. Yifan Chen, Xiao Xue, Richard Brito,  and Vitor Cardoso, “Photon Ring Astrometry for Superradiant Clouds,” Phys. Rev. Lett. 130, 111401 (2023a), arXiv:2211.03794 [gr-qc] .
  11. G. B. Gelmini and M. Roncadelli, “Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number,” Phys. Lett. B 99, 411–415 (1981).
  12. H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys. Rev. Lett. 32, 438–441 (1974).
  13. Jogesh C. Pati and Abdus Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10, 275–289 (1974), [Erratum: Phys.Rev.D 11, 703–703 (1975)].
  14. Rabindra N. Mohapatra and Jogesh C. Pati, “Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation,” Phys. Rev. D 11, 566–571 (1975).
  15. Jeffrey M. Berryman et al., “Neutrino Self-Interactions: A White Paper,” in Snowmass 2021 (2022) arXiv:2203.01955 [hep-ph] .
  16. Patrick B. Greene and Lev Kofman, “Preheating of fermions,” Phys. Lett. B 448, 6–12 (1999), arXiv:hep-ph/9807339 .
  17. Patrick B. Greene and Lev Kofman, “On the theory of fermionic preheating,” Phys. Rev. D 62, 123516 (2000), arXiv:hep-ph/0003018 .
  18. Julian S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664–679 (1951).
  19. Edoardo Vitagliano, Irene Tamborra,  and Georg Raffelt, “Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components,” Rev. Mod. Phys. 92, 45006 (2020), arXiv:1910.11878 [astro-ph.HE] .
  20. D. P. Bennett et al., “Gravitational microlensing events due to stellar mass black holes,” Astrophys. J. 579, 639–659 (2002), arXiv:astro-ph/0109467 .
  21. Leor Barack et al., “Black holes, gravitational waves and fundamental physics: a roadmap,” Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
  22. Laura W. Brenneman and Christopher S. Reynolds, “Constraining Black Hole Spin Via X-ray Spectroscopy,” Astrophys. J. 652, 1028–1043 (2006), arXiv:astro-ph/0608502 .
  23. Kazunori Akiyama et al. (Event Horizon Telescope), “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
  24. Kazunori Akiyama et al. (Event Horizon Telescope), “First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,” Astrophys. J. Lett. 930, L12 (2022).
  25. M. Kachelriess, R. Tomas,  and J. W. F. Valle, “Supernova bounds on Majoron emitting decays of light neutrinos,” Phys. Rev. D 62, 023004 (2000), arXiv:hep-ph/0001039 .
  26. Yasaman Farzan, “Bounds on the coupling of the Majoron to light neutrinos from supernova cooling,” Phys. Rev. D 67, 073015 (2003), arXiv:hep-ph/0211375 .
  27. Francesco Forastieri, Massimiliano Lattanzi,  and Paolo Natoli, “Cosmological constraints on neutrino self-interactions with a light mediator,” Phys. Rev. D 100, 103526 (2019), arXiv:1904.07810 [astro-ph.CO] .
  28. N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  29. M. G. Aartsen et al. (IceCube), “Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data,” Eur. Phys. J. C 79, 234 (2019), arXiv:1811.07979 [hep-ph] .
  30. R. Abbasi et al. (IceCube), “Observation of high-energy neutrinos from the Galactic plane,” Science 380, 6652 (2023a), arXiv:2307.04427 [astro-ph.HE] .
  31. Francesco D’Eramo and Jesse Thaler, “Semi-annihilation of Dark Matter,” JHEP 06, 109 (2010), arXiv:1003.5912 [hep-ph] .
  32. Shao-Feng Ge, Jianglai Liu, Qiang Yuan,  and Ning Zhou, “Diurnal Effect of Sub-GeV Dark Matter Boosted by Cosmic Rays,” Phys. Rev. Lett. 126, 091804 (2021), arXiv:2005.09480 [hep-ph] .
  33. Sven E. Vahsen, Ciaran A. J. O’Hare,  and Dinesh Loomba, “Directional Recoil Detection,” Ann. Rev. Nucl. Part. Sci. 71, 189–224 (2021), arXiv:2102.04596 [physics.ins-det] .
  34. R. Abbasi et al. (IceCube), “A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo,” Astrophys. J. 959, 96 (2023b), arXiv:2303.15970 [astro-ph.HE] .
  35. Y. Y. Kovalev, A. V. Plavin, A. B. Pushkarev,  and S. V. Troitsky, “Probing neutrino production in blazars by millimeter VLBI,” Galaxies 11, 84 (2023), arXiv:2307.02267 [astro-ph.HE] .
  36. Giulia Illuminati and Sergio Alves (ANTARES), “Searches for Point-like Sources of Cosmic Neutrinos with 15 Years of ANTARES Data,” PoS ICRC2023, 1128 (2023).
  37. V. M. Aynutdinov et al. (Baikal-GVD), “Track-like event analysis at the Baikal-GVD neutrino telescope,” PoS ICRC2023, 1001 (2023), arXiv:2310.03450 [astro-ph.IM] .
  38. S. Adrian-Martinez et al. (KM3Net), “Letter of intent for KM3NeT 2.0,” J. Phys. G 43, 084001 (2016), arXiv:1601.07459 [astro-ph.IM] .
  39. Matteo Agostini et al. (P-ONE), “The Pacific Ocean Neutrino Experiment,” Nature Astron. 4, 913–915 (2020), arXiv:2005.09493 [astro-ph.HE] .
  40. M. G. Aartsen et al. (IceCube-Gen2), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE] .
  41. Z. P. Ye et al. (TRIDENT), “A multi-cubic-kilometre neutrino telescope in the western pacific ocean,” Nature Astronomy 7, 1497–1505 (2023).
  42. Lisa Johanna Schumacher, Matthias Huber, Matteo Agostini, Mauricio Bustamante, Foteini Oikonomou,  and Elisa Resconi, “PLEν𝜈\nuitalic_νM: A global and distributed monitoring system of high-energy astrophysical neutrinos,” PoS ICRC2021, 1185 (2021), arXiv:2107.13534 [astro-ph.IM] .
  43. Peter Svrcek and Edward Witten, “Axions In String Theory,” JHEP 06, 051 (2006), arXiv:hep-th/0605206 .
  44. S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze,  and A. Ringwald, “Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology,” JHEP 07, 124 (2008), arXiv:0803.1449 [hep-ph] .
  45. Mark Goodsell, Joerg Jaeckel, Javier Redondo,  and Andreas Ringwald, “Naturally Light Hidden Photons in LARGE Volume String Compactifications,” JHEP 11, 027 (2009), arXiv:0909.0515 [hep-ph] .
  46. John Preskill, Mark B. Wise,  and Frank Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. 120B, 127–132 (1983).
  47. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120, 133–136 (1983).
  48. Michael Dine and Willy Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120, 137–141 (1983).
  49. Ann E. Nelson and Jakub Scholtz, “Dark Light, Dark Matter and the Misalignment Mechanism,” Phys. Rev. D 84, 103501 (2011), arXiv:1105.2812 [hep-ph] .
  50. William E. East and Frans Pretorius, ‘‘Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes,” Phys. Rev. Lett. 119, 041101 (2017), arXiv:1704.04791 [gr-qc] .
  51. Carlos A. R. Herdeiro, Eugen Radu,  and Nuno M. Santos, “A bound on energy extraction (and hairiness) from superradiance,” Phys. Lett. B 824, 136835 (2022), arXiv:2111.03667 [gr-qc] .
  52. Asimina Arvanitaki and Sergei Dubovsky, “Exploring the String Axiverse with Precision Black Hole Physics,” Phys. Rev. D83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  53. Asimina Arvanitaki, Masha Baryakhtar,  and Xinlu Huang, “Discovering the QCD Axion with Black Holes and Gravitational Waves,” Phys. Rev. D91, 084011 (2015), arXiv:1411.2263 [hep-ph] .
  54. Masha Baryakhtar, Robert Lasenby,  and Mae Teo, “Black Hole Superradiance Signatures of Ultralight Vectors,” Phys. Rev. D 96, 035019 (2017), arXiv:1704.05081 [hep-ph] .
  55. Richard Brito, Shrobana Ghosh, Enrico Barausse, Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine Klein,  and Paolo Pani, “Gravitational wave searches for ultralight bosons with LIGO and LISA,” Phys. Rev. D 96, 064050 (2017a), arXiv:1706.06311 [gr-qc] .
  56. Vitor Cardoso, Óscar J. C. Dias, Gavin S. Hartnett, Matthew Middleton, Paolo Pani,  and Jorge E. Santos, “Constraining the mass of dark photons and axion-like particles through black-hole superradiance,” JCAP 03, 043 (2018), arXiv:1801.01420 [gr-qc] .
  57. Hooman Davoudiasl and Peter B Denton, “Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*,” Phys. Rev. Lett. 123, 021102 (2019), arXiv:1904.09242 [astro-ph.CO] .
  58. Richard Brito, Sara Grillo,  and Paolo Pani, “Black Hole Superradiant Instability from Ultralight Spin-2 Fields,” Phys. Rev. Lett. 124, 211101 (2020), arXiv:2002.04055 [gr-qc] .
  59. Matthew J. Stott, “Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin,”   (2020), arXiv:2009.07206 [hep-ph] .
  60. Caner Ünal, Fabio Pacucci,  and Abraham Loeb, “Properties of ultralight bosons from heavy quasar spins via superradiance,” JCAP 05, 007 (2021), arXiv:2012.12790 [hep-ph] .
  61. Akash Kumar Saha, Priyank Parashari, Tarak Nath Maity, Abhishek Dubey, Subhadip Bouri,  and Ranjan Laha, “Bounds on ultralight bosons from the Event Horizon Telescope observation of Sgr A*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT,”   (2022), arXiv:2208.03530 [astro-ph.HE] .
  62. Hirotaka Yoshino and Hideo Kodama, “Bosenova collapse of axion cloud around a rotating black hole,” Prog. Theor. Phys. 128, 153–190 (2012), arXiv:1203.5070 [gr-qc] .
  63. Hirotaka Yoshino and Hideo Kodama, “Gravitational radiation from an axion cloud around a black hole: Superradiant phase,” PTEP 2014, 043E02 (2014), arXiv:1312.2326 [gr-qc] .
  64. Hirotaka Yoshino and Hideo Kodama, “The bosenova and axiverse,” Class. Quant. Grav. 32, 214001 (2015), arXiv:1505.00714 [gr-qc] .
  65. Richard Brito, Shrobana Ghosh, Enrico Barausse, Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine Klein,  and Paolo Pani, “Stochastic and resolvable gravitational waves from ultralight bosons,” Phys. Rev. Lett. 119, 131101 (2017b), arXiv:1706.05097 [gr-qc] .
  66. Maximiliano Isi, Ling Sun, Richard Brito,  and Andrew Melatos, “Directed searches for gravitational waves from ultralight bosons,” Phys. Rev. D 99, 084042 (2019), [Erratum: Phys.Rev.D 102, 049901 (2020)], arXiv:1810.03812 [gr-qc] .
  67. Nils Siemonsen and William E. East, “Gravitational wave signatures of ultralight vector bosons from black hole superradiance,” Phys. Rev. D 101, 024019 (2020), arXiv:1910.09476 [gr-qc] .
  68. Ling Sun, Richard Brito,  and Maximiliano Isi, “Search for ultralight bosons in Cygnus X-1 with Advanced LIGO,” Phys. Rev. D 101, 063020 (2020), [Erratum: Phys.Rev.D 102, 089902 (2020)], arXiv:1909.11267 [gr-qc] .
  69. Cristiano Palomba et al., “Direct constraints on ultra-light boson mass from searches for continuous gravitational waves,” Phys. Rev. Lett. 123, 171101 (2019), arXiv:1909.08854 [astro-ph.HE] .
  70. Sylvia J. Zhu, Masha Baryakhtar, Maria Alessandra Papa, Daichi Tsuna, Norita Kawanaka,  and Heinz-Bernd Eggenstein, “Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes,” Phys. Rev. D 102, 063020 (2020), arXiv:2003.03359 [gr-qc] .
  71. Leo Tsukada, Richard Brito, William E. East,  and Nils Siemonsen, “Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons,” Phys. Rev. D 103, 083005 (2021), arXiv:2011.06995 [astro-ph.HE] .
  72. Chen Yuan, Richard Brito,  and Vitor Cardoso, “Probing ultralight dark matter with future ground-based gravitational-wave detectors,” Phys. Rev. D 104, 044011 (2021a), arXiv:2106.00021 [gr-qc] .
  73. R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data,” Phys. Rev. D 105, 102001 (2022a), arXiv:2111.15507 [astro-ph.HE] .
  74. Chen Yuan, Yang Jiang,  and Qing-Guo Huang, “Constraints on an ultralight scalar boson from Advanced LIGO and Advanced Virgo’s first three observing runs using the stochastic gravitational-wave background,” Phys. Rev. D 106, 023020 (2022), arXiv:2204.03482 [astro-ph.CO] .
  75. Richard Brito and Shreya Shah, “Extreme mass-ratio inspirals into black holes surrounded by scalar clouds,” Phys. Rev. D 108, 084019 (2023), arXiv:2307.16093 [gr-qc] .
  76. Yifan Chen, Jing Shu, Xiao Xue, Qiang Yuan,  and Yue Zhao, “Probing Axions with Event Horizon Telescope Polarimetric Measurements,” Phys. Rev. Lett. 124, 061102 (2020), arXiv:1905.02213 [hep-ph] .
  77. Guan-Wen Yuan, Zi-Qing Xia, Chengfeng Tang, Yaqi Zhao, Yi-Fu Cai, Yifan Chen, Jing Shu,  and Qiang Yuan, “Testing the ALP-photon coupling with polarization measurements of Sagittarius A⋆⋆{}^{\star}start_FLOATSUPERSCRIPT ⋆ end_FLOATSUPERSCRIPT,” JCAP 03, 018 (2021b), arXiv:2008.13662 [astro-ph.HE] .
  78. Yifan Chen, Yuxin Liu, Ru-Sen Lu, Yosuke Mizuno, Jing Shu, Xiao Xue, Qiang Yuan,  and Yue Zhao, “Stringent axion constraints with Event Horizon Telescope polarimetric measurements of M87⋆⋆{}^{\star}start_FLOATSUPERSCRIPT ⋆ end_FLOATSUPERSCRIPT,” Nature Astron. 6, 592–598 (2022a), arXiv:2105.04572 [hep-ph] .
  79. Nils Siemonsen, Cristina Mondino, Daniel Egana-Ugrinovic, Junwu Huang, Masha Baryakhtar,  and William E. East, “Dark photon superradiance: Electrodynamics and multimessenger signals,” Phys. Rev. D 107, 075025 (2023), arXiv:2212.09772 [astro-ph.HE] .
  80. Hajime Fukuda and Kazunori Nakayama, “Aspects of Nonlinear Effect on Black Hole Superradiance,” JHEP 01, 128 (2020), arXiv:1910.06308 [hep-ph] .
  81. Masha Baryakhtar, Marios Galanis, Robert Lasenby,  and Olivier Simon, “Black hole superradiance of self-interacting scalar fields,” Phys. Rev. D 103, 095019 (2021), arXiv:2011.11646 [hep-ph] .
  82. Hidetoshi Omiya, Takuya Takahashi, Takahiro Tanaka,  and Hirotaka Yoshino, “Impact of multiple modes on the evolution of self-interacting axion condensate around rotating black holes,” JCAP 06, 016 (2023), arXiv:2211.01949 [gr-qc] .
  83. João G. Rosa and Thomas W. Kephart, “Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes,” Phys. Rev. Lett. 120, 231102 (2018), arXiv:1709.06581 [gr-qc] .
  84. Mateja Boskovic, Richard Brito, Vitor Cardoso, Taishi Ikeda,  and Helvi Witek, “Axionic instabilities and new black hole solutions,” Phys. Rev. D 99, 035006 (2019), arXiv:1811.04945 [gr-qc] .
  85. Taishi Ikeda, Richard Brito,  and Vitor Cardoso, “Blasts of Light from Axions,” Phys. Rev. Lett. 122, 081101 (2019), arXiv:1811.04950 [gr-qc] .
  86. Thomas F. M. Spieksma, Enrico Cannizzaro, Taishi Ikeda, Vitor Cardoso,  and Yifan Chen, “Superradiance: Axionic couplings and plasma effects,” Phys. Rev. D 108, 063013 (2023), arXiv:2306.16447 [gr-qc] .
  87. Diego Blas and Samuel J. Witte, ‘‘Quenching Mechanisms of Photon Superradiance,” Phys. Rev. D 102, 123018 (2020), arXiv:2009.10075 [hep-ph] .
  88. M. G. Aartsen et al. (IceCube), “Energy Reconstruction Methods in the IceCube Neutrino Telescope,” JINST 9, P03009 (2014), arXiv:1311.4767 [physics.ins-det] .
  89. S. Aiello et al. (KM3NeT), “Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources,” Astropart. Phys. 111, 100–110 (2019), arXiv:1810.08499 [astro-ph.HE] .
  90. Damiano F. G. Fiorillo, Mauricio Bustamante,  and Victor B. Valera, “Near-future discovery of point sources of ultra-high-energy neutrinos,” JCAP 03, 026 (2023a), arXiv:2205.15985 [astro-ph.HE] .
  91. M. G. Aartsen et al. (IceCube), “Measurement of the Atmospheric νesubscript𝜈𝑒\nu_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT Spectrum with IceCube,” Phys. Rev. D 91, 122004 (2015), arXiv:1504.03753 [astro-ph.HE] .
  92. E. Richard et al. (Super-Kamiokande), “Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation,” Phys. Rev. D 94, 052001 (2016), arXiv:1510.08127 [hep-ex] .
  93. A. Albert et al. (ANTARES), “All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data,” Astrophys. J. Lett. 853, L7 (2018), arXiv:1711.07212 [astro-ph.HE] .
  94. V. A. Allakhverdyan et al. (Baikal-GVD), “Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope,” Phys. Rev. D 107, 042005 (2023), arXiv:2211.09447 [astro-ph.HE] .
  95. Junwu Huang and Yue Zhao, “Dark Matter Induced Nucleon Decay: Model and Signatures,” JHEP 02, 077 (2014), arXiv:1312.0011 [hep-ph] .
  96. Kaustubh Agashe, Yanou Cui, Lina Necib,  and Jesse Thaler, “(In)direct Detection of Boosted Dark Matter,” JCAP 10, 062 (2014), arXiv:1405.7370 [hep-ph] .
  97. Joachim Kopp, Jia Liu,  and Xiao-Ping Wang, “Boosted Dark Matter in IceCube and at the Galactic Center,” JHEP 04, 105 (2015), arXiv:1503.02669 [hep-ph] .
  98. Atri Bhattacharya, Raj Gandhi, Aritra Gupta,  and Satyanarayan Mukhopadhyay, “Boosted Dark Matter and its implications for the features in IceCube HESE data,” JCAP 05, 002 (2017), arXiv:1612.02834 [hep-ph] .
  99. C. Kachulis et al. (Super-Kamiokande), “Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande,” Phys. Rev. Lett. 120, 221301 (2018), arXiv:1711.05278 [hep-ex] .
  100. Animesh Chatterjee, Albert De Roeck, Doojin Kim, Zahra Gh. Moghaddam, Jong-Chul Park, Seodong Shin, Leigh H. Whitehead,  and Jaehoon Yu, “Searching for boosted dark matter at ProtoDUNE,” Phys. Rev. D 98, 075027 (2018), arXiv:1803.03264 [hep-ph] .
  101. Ayuki Kamada, Hee Jung Kim,  and Hyungjin Kim, “Self-heating of Strongly Interacting Massive Particles,” Phys. Rev. D 98, 023509 (2018b), arXiv:1805.05648 [hep-ph] .
  102. David McKeen and Nirmal Raj, “Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection,” Phys. Rev. D 99, 103003 (2019), arXiv:1812.05102 [hep-ph] .
  103. C. A. Argüelles et al., “New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter,” Rept. Prog. Phys. 83, 124201 (2020), arXiv:1907.08311 [hep-ph] .
  104. Ayuki Kamada and Hee Jung Kim, “Escalating core formation with dark matter self-heating,” Phys. Rev. D 102, 043009 (2020), arXiv:1911.09717 [hep-ph] .
  105. Joshua Berger, Yanou Cui, Mathew Graham, Lina Necib, Gianluca Petrillo, Dane Stocks, Yun-Tse Tsai,  and Yue Zhao, “Prospects for detecting boosted dark matter in DUNE through hadronic interactions,” Phys. Rev. D 103, 095012 (2021), arXiv:1912.05558 [hep-ph] .
  106. Babak Abi et al. (DUNE), “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics,”   (2020), arXiv:2002.03005 [hep-ex] .
  107. Yifan Chen, Bartosz Fornal, Pearl Sandick, Jing Shu, Xiao Xue, Yue Zhao,  and Junchao Zong, “Earth shielding and daily modulation from electrophilic boosted dark particles,” Phys. Rev. D 107, 033006 (2023b), arXiv:2110.09685 [hep-ph] .
  108. Chen Xia, Yan-Hao Xu,  and Yu-Feng Zhou, “Production and attenuation of cosmic-ray boosted dark matter,” JCAP 02, 028 (2022), arXiv:2111.05559 [hep-ph] .
  109. Xiangyi Cui et al. (PandaX-II), “Search for Cosmic-Ray Boosted Sub-GeV Dark Matter at the PandaX-II Experiment,” Phys. Rev. Lett. 128, 171801 (2022), arXiv:2112.08957 [hep-ex] .
  110. Mai Qiao, Chen Xia,  and Yu-Feng Zhou, “Diurnal modulation of electron recoils from DM-nucleon scattering through the Migdal effect,” JCAP 11, 079 (2023), arXiv:2307.12820 [hep-ph] .
  111. Y. Chikashige, Rabindra N. Mohapatra,  and R. D. Peccei, “Are There Real Goldstone Bosons Associated with Broken Lepton Number?” Phys. Lett. B 98, 265–268 (1981).
  112. C. S. Aulakh and Rabindra N. Mohapatra, “Neutrino as the Supersymmetric Partner of the Majoron,” Phys. Lett. B 119, 136–140 (1982).
  113. Harald Fritzsch and Peter Minkowski, “Unified Interactions of Leptons and Hadrons,” Annals Phys. 93, 193–266 (1975).
  114. Howard Georgi, “The State of the Art—Gauge Theories,” AIP Conf. Proc. 23, 575–582 (1975).
  115. Edward W. Kolb and Michael S. Turner, “Supernova SN 1987a and the Secret Interactions of Neutrinos,” Phys. Rev. D 36, 2895 (1987).
  116. A. Gando et al. (KamLAND-Zen), “Limits on Majoron-emitting double-beta decays of Xe-136 in the KamLAND-Zen experiment,” Phys. Rev. C 86, 021601 (2012), arXiv:1205.6372 [hep-ex] .
  117. Tim Brune and Heinrich Päs, “Massive Majorons and constraints on the Majoron-neutrino coupling,” Phys. Rev. D 99, 096005 (2019), arXiv:1808.08158 [hep-ph] .
  118. Guo-yuan Huang, Tommy Ohlsson,  and Shun Zhou, “Observational Constraints on Secret Neutrino Interactions from Big Bang Nucleosynthesis,” Phys. Rev. D 97, 075009 (2018), arXiv:1712.04792 [hep-ph] .
  119. Shao-Ping Li and Xun-Jie Xu, ‘‘Ne⁢f⁢f𝑒𝑓𝑓{}_{eff}start_FLOATSUBSCRIPT italic_e italic_f italic_f end_FLOATSUBSCRIPT constraints on light mediators coupled to neutrinos: the dilution-resistant effect,” JHEP 10, 012 (2023), arXiv:2307.13967 [hep-ph] .
  120. Miguel Escudero and Samuel J. Witte, “A CMB search for the neutrino mass mechanism and its relation to the Hubble tension,” Eur. Phys. J. C 80, 294 (2020), arXiv:1909.04044 [astro-ph.CO] .
  121. Stefan Sandner, Miguel Escudero,  and Samuel J. Witte, “Precision CMB constraints on eV-scale bosons coupled to neutrinos,” Eur. Phys. J. C 83, 709 (2023), arXiv:2305.01692 [hep-ph] .
  122. Damiano F. G. Fiorillo, Georg G. Raffelt,  and Edoardo Vitagliano, “Supernova emission of secretly interacting neutrino fluid: Theoretical foundations,” Phys. Rev. D 109, 023017 (2024a), arXiv:2307.15122 [hep-ph] .
  123. Damiano F. G. Fiorillo, Georg G. Raffelt,  and Edoardo Vitagliano, “Large Neutrino Secret Interactions Have a Small Impact on Supernovae,” Phys. Rev. Lett. 132, 021002 (2024b), arXiv:2307.15115 [hep-ph] .
  124. Matías M. Reynoso and Oscar A. Sampayo, “Propagation of high-energy neutrinos in a background of ultralight scalar dark matter,” Astropart. Phys. 82, 10–20 (2016), arXiv:1605.09671 [hep-ph] .
  125. Asher Berlin, “Neutrino Oscillations as a Probe of Light Scalar Dark Matter,” Phys. Rev. Lett. 117, 231801 (2016), arXiv:1608.01307 [hep-ph] .
  126. Gordan Krnjaic, Pedro A. N. Machado,  and Lina Necib, “Distorted neutrino oscillations from time varying cosmic fields,” Phys. Rev. D 97, 075017 (2018), arXiv:1705.06740 [hep-ph] .
  127. Vedran Brdar, Joachim Kopp, Jia Liu, Pascal Prass,  and Xiao-Ping Wang, “Fuzzy dark matter and nonstandard neutrino interactions,” Phys. Rev. D 97, 043001 (2018), arXiv:1705.09455 [hep-ph] .
  128. Hooman Davoudiasl, Gopolang Mohlabeng,  and Matthew Sullivan, “Galactic Dark Matter Population as the Source of Neutrino Masses,” Phys. Rev. D 98, 021301 (2018), arXiv:1803.00012 [hep-ph] .
  129. Jiajun Liao, Danny Marfatia,  and Kerry Whisnant, “Light scalar dark matter at neutrino oscillation experiments,” JHEP 04, 136 (2018), arXiv:1803.01773 [hep-ph] .
  130. Francesco Capozzi, Ian M. Shoemaker,  and Luca Vecchi, “Neutrino Oscillations in Dark Backgrounds,” JCAP 07, 004 (2018), arXiv:1804.05117 [hep-ph] .
  131. Guo-Yuan Huang and Newton Nath, “Neutrinophilic Axion-Like Dark Matter,” Eur. Phys. J. C 78, 922 (2018), arXiv:1809.01111 [hep-ph] .
  132. Yasaman Farzan, “Ultra-light scalar saving the 3 + 1 neutrino scheme from the cosmological bounds,” Phys. Lett. B 797, 134911 (2019), arXiv:1907.04271 [hep-ph] .
  133. James M. Cline, “Viable secret neutrino interactions with ultralight dark matter,” Phys. Lett. B 802, 135182 (2020), arXiv:1908.02278 [hep-ph] .
  134. Marta Losada, Yosef Nir, Gilad Perez,  and Yogev Shpilman, “Probing scalar dark matter oscillations with neutrino oscillations,” JHEP 04, 030 (2022), arXiv:2107.10865 [hep-ph] .
  135. Guo-yuan Huang and Newton Nath, “Neutrino meets ultralight dark matter: 0ν𝜈\nuitalic_νβ𝛽\betaitalic_ββ𝛽\betaitalic_β decay and cosmology,” JCAP 05, 034 (2022), arXiv:2111.08732 [hep-ph] .
  136. Eung Jin Chun, “Neutrino Transition in Dark Matter,”   (2021), arXiv:2112.05057 [hep-ph] .
  137. Abhish Dev, Gordan Krnjaic, Pedro Machado,  and Harikrishnan Ramani, “Constraining feeble neutrino interactions with ultralight dark matter,” Phys. Rev. D 107, 035006 (2023), arXiv:2205.06821 [hep-ph] .
  138. Guo-yuan Huang, Manfred Lindner, Pablo Martínez-Miravé,  and Manibrata Sen, “Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal,” Phys. Rev. D 106, 033004 (2022), arXiv:2205.08431 [hep-ph] .
  139. Marta Losada, Yosef Nir, Gilad Perez, Inbar Savoray,  and Yogev Shpilman, “Parametric resonance in neutrino oscillations induced by ultra-light dark matter and implications for KamLAND and JUNO,” JHEP 03, 032 (2023a), arXiv:2205.09769 [hep-ph] .
  140. Dawid Brzeminski, Saurav Das, Anson Hook,  and Clayton Ristow, “Constraining Vector Dark Matter with neutrino experiments,” JHEP 08, 181 (2023), arXiv:2212.05073 [hep-ph] .
  141. Gonzalo Alonso-Álvarez, Katarina Bleau,  and James M. Cline, “Distortion of neutrino oscillations by dark photon dark matter,” Phys. Rev. D 107, 055045 (2023), arXiv:2301.04152 [hep-ph] .
  142. YeolLin ChoeJo, Yechan Kim,  and Hye-Sung Lee, “Dirac-Majorana neutrino type oscillation induced by a wave dark matter,” Phys. Rev. D 108, 095028 (2023), arXiv:2305.16900 [hep-ph] .
  143. Marta Losada, Yosef Nir, Gilad Perez, Inbar Savoray,  and Yogev Shpilman, “Time dependent CP-even and CP-odd signatures of scalar ultralight dark matter in neutrino oscillations,” Phys. Rev. D 108, 055004 (2023b), arXiv:2302.00005 [hep-ph] .
  144. Peter W. Graham, David E. Kaplan, Jeremy Mardon, Surjeet Rajendran,  and William A. Terrano, “Dark Matter Direct Detection with Accelerometers,” Phys. Rev. D 93, 075029 (2016), arXiv:1512.06165 [hep-ph] .
  145. Aaron Pierce, Keith Riles,  and Yue Zhao, “Searching for Dark Photon Dark Matter with Gravitational Wave Detectors,” Phys. Rev. Lett. 121, 061102 (2018), arXiv:1801.10161 [hep-ph] .
  146. R. Abbott et al. (LIGO Scientific, KAGRA, Virgo), “Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run,” Phys. Rev. D 105, 063030 (2022b), arXiv:2105.13085 [astro-ph.CO] .
  147. E. A. Shaw, M. P. Ross, C. A. Hagedorn, E. G. Adelberger,  and J. H. Gundlach, “Torsion-balance search for ultralow-mass bosonic dark matter,” Phys. Rev. D 105, 042007 (2022), arXiv:2109.08822 [astro-ph.CO] .
  148. Xiao Xue et al. (PPTA), “High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array,” Phys. Rev. Res. 4, L012022 (2022), arXiv:2112.07687 [hep-ph] .
  149. Shao-Feng Ge and Pedro Pasquini, “Probing light mediators in the radiative emission of neutrino pair,” Eur. Phys. J. C 82, 208 (2022), arXiv:2110.03510 [hep-ph] .
  150. Jiang-Chuan Yu, Yue-Hui Yao, Yong Tang,  and Yue-Liang Wu, “Sensitivity of space-based gravitational-wave interferometers to ultralight bosonic fields and dark matter,” Phys. Rev. D 108, 083007 (2023), arXiv:2307.09197 [gr-qc] .
  151. Ranjan Laha, Basudeb Dasgupta,  and John F. Beacom, “Constraints on New Neutrino Interactions via Light Abelian Vector Bosons,” Phys. Rev. D 89, 093025 (2014), arXiv:1304.3460 [hep-ph] .
  152. Pouya Bakhti and Yasaman Farzan, “Constraining secret gauge interactions of neutrinos by meson decays,” Phys. Rev. D 95, 095008 (2017), arXiv:1702.04187 [hep-ph] .
  153. Miguel Escudero, Dan Hooper, Gordan Krnjaic,  and Mathias Pierre, “Cosmology with A Very Light Lμ𝜇{}_{\mu}start_FLOATSUBSCRIPT italic_μ end_FLOATSUBSCRIPT −-- Lτ𝜏{}_{\tau}start_FLOATSUBSCRIPT italic_τ end_FLOATSUBSCRIPT Gauge Boson,” JHEP 03, 071 (2019), arXiv:1901.02010 [hep-ph] .
  154. Majid Bahraminasr, Pouya Bakhti,  and Meshkat Rajaee, “Sensitivities to secret neutrino interaction at FASERν𝜈\nuitalic_ν,” J. Phys. G 48, 095001 (2021), arXiv:2003.09985 [hep-ph] .
  155. Jeff A. Dror, “Discovering leptonic forces using nonconserved currents,” Phys. Rev. D 101, 095013 (2020), arXiv:2004.04750 [hep-ph] .
  156. Majid Ekhterachian, Anson Hook, Soubhik Kumar,  and Yuhsin Tsai, “Bounds on gauge bosons coupled to nonconserved currents,” Phys. Rev. D 104, 035034 (2021), arXiv:2103.13396 [hep-ph] .
  157. Masoom Singh, Mauricio Bustamante,  and Sanjib Kumar Agarwalla, “Flavor-dependent long-range neutrino interactions in DUNE & T2HK: alone they constrain, together they discover,” JHEP 08, 101 (2023), arXiv:2305.05184 [hep-ph] .
  158. Patrick Stöcker et al. (GAMBIT Cosmology Workgroup), “Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments,” Phys. Rev. D 103, 123508 (2021), arXiv:2009.03287 [astro-ph.CO] .
  159. Asher Berlin and Anson Hook, “Searching for Millicharged Particles with Superconducting Radio-Frequency Cavities,” Phys. Rev. D 102, 035010 (2020), arXiv:2001.02679 [hep-ph] .
  160. Ya. B. Zeldovich and Alexei A. Starobinsky, ‘‘Particle production and vacuum polarization in an anisotropic gravitational field,” Zh. Eksp. Teor. Fiz. 61, 2161–2175 (1971).
  161. Lev Kofman, Andrei D. Linde,  and Alexei A. Starobinsky, “Towards the theory of reheating after inflation,” Phys. Rev. D 56, 3258–3295 (1997), arXiv:hep-ph/9704452 .
  162. Jean-Philippe Uzan, Martin Pernot-Borràs,  and Joel Bergé, “Effects of a scalar fifth force on the dynamics of a charged particle as a new experimental design to test chameleon theories,” Phys. Rev. D 102, 044059 (2020), arXiv:2006.03359 [gr-qc] .
  163. George Casella, Christian Robert,  and Martin Wells, “Generalized accept-reject sampling schemes,” Lecture Notes-Monograph Series 45 (2004), 10.1214/lnms/1196285403.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: