Papers
Topics
Authors
Recent
2000 character limit reached

Uniform attachment with freezing: Scaling limits (2308.00484v3)

Published 1 Aug 2023 in math.PR

Abstract: We investigate scaling limits of trees built by uniform attachment with freezing, which is a variant of the classical model of random recursive trees introduced in a companion paper. Here vertices are allowed to freeze, and arriving vertices cannot be attached to already frozen ones. We identify a phase transition when the number of non-frozen vertices roughly evolves as the total number of vertices to a given power. In particular, we observe a critical regime where the scaling limit is a random compact real tree, closely related to a time non-homogenous Kingman coalescent process identified by Aldous. Interestingly, in this critical regime, a condensation phenomenon can occur.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.