Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multilevel well modeling in aggregation-based nonlinear multigrid for multiphase flow in porous media

Published 31 Jul 2023 in math.NA and cs.NA | (2308.00125v1)

Abstract: A full approximation scheme (FAS) nonlinear multigrid solver for two-phase flow and transport problems driven by wells with multiple perforations is developed. It is an extension to our previous work on FAS solvers for diffusion and transport problems. The solver is applicable to discrete problems defined on unstructured grids as the coarsening algorithm is aggregation-based and algebraic. To construct coarse basis that can better capture the radial flow near wells, coarse grids in which perforated well cells are not near the coarse-element interface are desired. This is achieved by an aggregation algorithm proposed in this paper that makes use of the location of well cells in the cell-connectivity graph. Numerical examples in which the FAS solver is compared against Newton's method on benchmark problems are given. In particular, for a refined version of the SAIGUP model, the FAS solver is at least 35% faster than Newton's method for time steps with a CFL number greater than 10.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.