2000 character limit reached
Metric@CustomerN: Evaluating Metrics at a Customer Level in E-Commerce
Published 31 Jul 2023 in cs.IR | (2307.16832v1)
Abstract: Accuracy measures such as Recall, Precision, and Hit Rate have been a standard way of evaluating Recommendation Systems. The assumption is to use a fixed Top-N to represent them. We propose that median impressions viewed from historical sessions per diner be used as a personalized value for N. We present preliminary exploratory results and list future steps to improve upon and evaluate the efficacy of these personalized metrics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.