Distinct photon-ALP propagation modes (2307.15602v3)
Abstract: Measurement of cosmic photons may reveal their propagation in the interstellar environment, thereby offering a promising way to probe axions and axion-like particles (ALPs). Numerical methods are usually used to compute the propagation of the photon-ALP beam due to the complexity of both the interstellar magnetic field and the evolution equation. However, under certain conditions, the evolution equation can be greatly simplified so that the photon-ALP propagation can be analytically solved. By using analytic methods, we find two distinct photon-ALP propagation modes, determined by the relative magnitude of the photon-ALP mixing term in comparison to the photon attenuation term. In one mode, the intensity of photons decreases with the increasing distance; in the other mode, it also exhibits oscillatory behavior. To distinguish the two propagation modes, we compute the observable quantities such as the photon survival probability and the degree of polarization. We also determine through analytic methods the conditions under which maximum polarization can be observed and the corresponding upper bound of the survival probability.
- A. Ringwald, “Exploring the Role of Axions and Other WISPs in the Dark Universe,” Phys. Dark Univ. 1 (2012) 116–135 [arXiv:1210.5081].
- I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102 (2018) 89–159 [arXiv:1801.08127].
- C. B. Adams et al. in Snowmass 2021. 2022. arXiv:2203.14923.
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
- J. Jaeckel and A. Ringwald, “The Low-Energy Frontier of Particle Physics,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 405–437 [arXiv:1002.0329].
- S. Chang, S. Tazawa, and M. Yamaguchi, “Axion model in extra dimensions with TeV scale gravity,” Phys. Rev. D 61 (2000) 084005 [hep-ph/9908515].
- N. Turok, “Almost Goldstone bosons from extra dimensional gauge theories,” Phys. Rev. Lett. 76 (1996) 1015–1018 [hep-ph/9511238].
- P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051 [hep-th/0605206].
- 2008. arXiv:0810.3106.
- A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String Axiverse,” Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720].
- L. Maiani, R. Petronzio, and E. Zavattini, “Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field,” Phys. Lett. B 175 (1986) 359–363.
- G. Raffelt and L. Stodolsky, “Mixing of the Photon with Low Mass Particles,” Phys. Rev. D 37 (1988) 1237.
- H.-J. Li, J.-G. Guo, X.-J. Bi, S.-J. Lin, and P.-F. Yin, “Limits on axion-like particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT,” Phys. Rev. D 103 (2021) 083003 [arXiv:2008.09464].
- D. Horns, L. Maccione, A. Mirizzi, and M. Roncadelli, “Probing axion-like particles with the ultraviolet photon polarization from active galactic nuclei in radio galaxies,” Phys. Rev. D 85 (2012) 085021 [arXiv:1203.2184].
- R. Gill and J. S. Heyl, “Constraining the photon-axion coupling constant with magnetic white dwarfs,” Phys. Rev. D 84 (2011) 085001 [arXiv:1105.2083].
- G. Galanti, “Photon-ALP oscillations inducing modifications to photon polarization,” Phys. Rev. D 107 (2023) 043006 [arXiv:2202.11675].
- G. Galanti, M. Roncadelli, F. Tavecchio, and E. Costa, “ALP induced polarization effects on photons from galaxy clusters,” Phys. Rev. D 107 (2023) 103007 [arXiv:2202.12286].
- Y. Grossman, S. Roy, and J. Zupan, “Effects of initial axion production and photon axion oscillation on type Ia supernova dimming,” Phys. Lett. B 543 (2002) 23–28 [hep-ph/0204216].
- C. Csaki, N. Kaloper, M. Peloso, and J. Terning, “Super GZK photons from photon axion mixing,” JCAP 05 (2003) 005 [hep-ph/0302030].
- D. Lai and J. Heyl, “Probing Axions with Radiation from Magnetic Stars,” Phys. Rev. D 74 (2006) 123003 [astro-ph/0609775].
- A. De Angelis, M. Roncadelli, and O. Mansutti, “Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?” Phys. Rev. D 76 (2007) 121301 [arXiv:0707.4312].
- N. Agarwal, P. Jain, D. W. McKay, and J. P. Ralston, “Signatures of Pseudoscalar Photon Mixing in CMB Radiation,” Phys. Rev. D 78 (2008) 085028 [arXiv:0807.4587].
- A. K. Ganguly, P. Jain, and S. Mandal, “Photon and axion oscillation in a magnetized medium: A general treatment,” Phys. Rev. D 79 (2009) 115014 [arXiv:0810.4380].
- A. Mirizzi and D. Montanino, “Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields,” JCAP 12 (2009) 004 [arXiv:0911.0015].
- C. Wang and D. Lai, “Axion-photon Propagation in Magnetized Universe,” JCAP 06 (2016) 006 [arXiv:1511.03380].
- A. Kartavtsev, G. Raffelt, and H. Vogel, “Extragalactic photon-ALP conversion at CTA energies,” JCAP 01 (2017) 024 [arXiv:1611.04526].
- A. De Angelis, G. Galanti, and M. Roncadelli, “Relevance of axion-like particles for very-high-energy astrophysics,” Phys. Rev. D 84 (2011) 105030 [arXiv:1106.1132]. [Erratum: Phys.Rev.D 87, 109903 (2013)].
- G. Galanti and M. Roncadelli, “Axion-like Particles Implications for High-Energy Astrophysics,” Universe 8 (2022) 253 [arXiv:2205.00940].
- S. Vernetto and P. Lipari, “Absorption of very high energy gamma rays in the Milky Way,” Phys. Rev. D 94 (2016) 063009 [arXiv:1608.01587].
- P. Lipari and S. Vernetto, “Diffuse Galactic gamma ray flux at very high energy,” Phys. Rev. D 98 (2018) 043003 [arXiv:1804.10116].
- 2000.
- J. I. Latorre, P. Pascual, and R. Tarrach, “Speed of light in nontrivial vacua,” Nucl. Phys. B 437 (1995) 60–82 [hep-th/9408016].
- M. V. Cougo-Pinto, C. Farina, F. C. Santos, and A. Tort, “The speed of light in confined QED vacuum: Faster or slower than c?” Phys. Lett. B 446 (1999) 170–174.
- R. Tarrach, “Thermal Effects on the Speed of Light,” Phys. Lett. B 133 (1983) 259–261.
- S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Annals Phys. 67 (1971) 599–647.
- A. Dobrynina, A. Kartavtsev, and G. Raffelt, “Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion,” Phys. Rev. D 91 (2015) 083003 [arXiv:1412.4777]. [Erratum: Phys.Rev.D 95, 109905 (2017)].
- A. Kosowsky, “Introduction to microwave background polarization,” New Astron. Rev. 43 (1999) 157 [astro-ph/9904102].
- G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics. 1979.
- J. M. Yao, R. N. Manchester, and N. Wang, “A new electron density model for estimation of pulsar and FRB distances,” The Astrophysical Journal 835 (2017) 29.
- I. G. Irastorza, “An introduction to axions and their detection,” SciPost Phys. Lect. Notes 45 (2022) 1 [arXiv:2109.07376].
- R. Jansson and G. R. Farrar, “A New Model of the Galactic Magnetic Field,” Astrophys. J. 757 (2012) 14 [arXiv:1204.3662].
- R. Jansson and G. R. Farrar, “The Galactic Magnetic Field,” Astrophys. J. Lett. 761 (2012) L11 [arXiv:1210.7820].
- R. E. Pudritz, M. J. Hardcastle, and D. C. Gabuzda, “Magnetic Fields in Astrophysical Jets: From Launch to Termination,” Space Sci. Rev. 169 (2012) 27–72 [arXiv:1205.2073].
- F. Tavecchio, G. Ghisellini, G. Ghirlanda, L. Foschini, and L. Maraschi, “TeV BL Lac objects at the dawn of the Fermi era,” Mon. Not. Roy. Astron. Soc. 401 (2010) 1570 [arXiv:0909.0651].
- F. Govoni and L. Feretti, “Magnetic field in clusters of galaxies,” Int. J. Mod. Phys. D 13 (2004) 1549–1594 [astro-ph/0410182].
- A. Neronov and I. Vovk, “Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars,” Science 328 (2010) 73–75 [arXiv:1006.3504].
- M. S. Pshirkov, P. G. Tinyakov, and F. R. Urban, “New limits on extragalactic magnetic fields from rotation measures,” Phys. Rev. Lett. 116 (2016) 191302 [arXiv:1504.06546].
- 2018.
- G. Z. Angeli and P. Dierickx, eds., “The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s,” Proc. SPIE Int. Soc. Opt. Eng. 10699 (2018) 106992J [arXiv:1805.06435].
- AMEGO Team Collaboration, “AMEGO: Exploring the Extreme Multimessenger Universe,” Proc. SPIE Int. Soc. Opt. Eng. 11444 (2020) 1144431 [arXiv:2101.03105].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.