Papers
Topics
Authors
Recent
2000 character limit reached

The convergence of discrete period matrices (2307.15468v1)

Published 28 Jul 2023 in math.CV and math.CO

Abstract: We study compact polyhedral surfaces as Riemann surfaces and their discrete counterparts obtained through quadrilateral cellular decompositions and a linear discretization of the Cauchy-Riemann equation. By ensuring uniformly bounded interior and intersection angles of diagonals, we establish the convergence of discrete Dirichlet energies of discrete harmonic differentials with equal black and white periods to the Dirichlet energy of the corresponding continuous harmonic differential with the same periods. This convergence also extends to the discrete period matrix, with a description of the blocks of the complete discrete period matrix in the limit. Moreover, when the quadrilaterals have orthogonal diagonals, we observe convergence of discrete Abelian integrals of the first kind. Adapting the quadrangulations around conical singularities allows us to improve the convergence rate to a linear function of the maximum edge length.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.