Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modification of charged-particle jets in event-shape engineered Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

Published 26 Jul 2023 in nucl-ex and hep-ex | (2307.14097v2)

Abstract: Charged-particle jet yields have been measured in semicentral Pb$-$Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-$k_{\rm T}$ algorithm with resolution parameters $R =$ 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb$-$Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum ($<$ 50 GeV/$c$) $R =$ 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2$\sigma$ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339–376, arXiv:1802.04801 [hep-ph].
  2. HotQCD Collaboration, A. Bazavov et al., “Equation of state in (2+1)-flavor QCD”, Phys. Rev. D 90 (2014) 094503, arXiv:1407.6387 [hep-lat].
  3. C. Ratti, “Lattice QCD and heavy ion collisions: a review of recent progress”, Rept. Prog. Phys. 81 (2018) 084301, arXiv:1804.07810 [hep-lat].
  4. ALICE Collaboration, “The ALICE experiment - A journey through QCD”, arXiv:2211.04384 [nucl-ex].
  5. M. Gyulassy and M. Plumer, “Jet Quenching in Dense Matter”, Phys. Lett. B 243 (1990) 432–438.
  6. G.-Y. Qin and X.-N. Wang, “Jet quenching in high-energy heavy-ion collisions”, Int. J. Mod. Phys. E 24 (2015) 1530014, arXiv:1511.00790 [hep-ph].
  7. M. Connors, C. Nattrass, R. Reed, and S. Salur, “Jet measurements in heavy ion physics”, Rev. Mod. Phys. 90 (2018) 025005, arXiv:1705.01974 [nucl-ex].
  8. ALICE Collaboration, S. Acharya et al., “Measurements of inclusive jet spectra in pp and central Pb–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 101 (2020) 034911, arXiv:1909.09718 [nucl-ex].
  9. STAR Collaboration, J. Adam et al., “Measurement of inclusive charged-particle jet production in Au+Au collisions at sNN=200subscript𝑠NN200\sqrt{s_{\rm NN}}=200~{}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200GeV”, Phys. Rev. C 102 (2020) 054913, arXiv:2006.00582 [nucl-ex].
  10. CMS Collaboration, V. Khachatryan et al., “Measurement of inclusive jet cross sections in p⁢p𝑝𝑝ppitalic_p italic_p and PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 96 (2017) 015202, arXiv:1609.05383 [nucl-ex].
  11. ATLAS Collaboration, G. Aad et al., “Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS Detector”, Phys. Rev. Lett. 114 (2015) 072302, arXiv:1411.2357 [hep-ex].
  12. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, “Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma”, Nucl. Phys. B 483 (1997) 291–320, arXiv:hep-ph/9607355.
  13. M. Gyulassy, P. Levai, and I. Vitev, “NonAbelian energy loss at finite opacity”, Phys. Rev. Lett. 85 (2000) 5535–5538, arXiv:nucl-th/0005032.
  14. M. Djordjevic, D. Zigic, M. Djordjevic, and J. Auvinen, “How to test path-length dependence in energy loss mechanisms: analysis leading to a new observable”, Phys. Rev. C 99 (2019) 061902, arXiv:1805.04030 [nucl-th].
  15. M. Djordjevic and M. Gyulassy, “Heavy quark radiative energy loss in QCD matter”, Nucl. Phys. A 733 (2004) 265–298, arXiv:nucl-th/0310076.
  16. ATLAS Collaboration, G. Aad et al., “Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS Detector at the LHC”, Phys. Rev. Lett. 105 (2010) 252303, arXiv:1011.6182 [hep-ex].
  17. ATLAS Collaboration, G. Aad et al., “Measurements of the suppression and correlations of dijets in Pb+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02~{}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02TeV”, Phys. Rev. C 107 (2023) 054908, arXiv:2205.00682 [nucl-ex].
  18. CMS Collaboration, S. Chatrchyan et al., “Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy =2.76absent2.76=2.76~{}= 2.76TeV”, Phys. Rev. C 84 (2011) 024906, arXiv:1102.1957 [nucl-ex].
  19. J. G. Milhano and K. C. Zapp, “Origins of the di-jet asymmetry in heavy ion collisions”, Eur. Phys. J. C 76 (2016) 288, arXiv:1512.08107 [hep-ph].
  20. ALICE Collaboration, J. Adam et al., “Azimuthal anisotropy of charged jet production in sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV Pb–Pb collisions”, Phys. Lett. B 753 (2016) 511–525, arXiv:1509.07334 [nucl-ex].
  21. ATLAS Collaboration, G. Aad et al., “Measurement of the Azimuthal Angle Dependence of Inclusive Jet Yields in Pb+Pb Collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector”, Phys. Rev. Lett. 111 (2013) 152301, arXiv:1306.6469 [hep-ex].
  22. ATLAS Collaboration, G. Aad et al., “Measurements of azimuthal anisotropies of jet production in Pb+Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector”, Phys. Rev. C 105 (2022) 064903, arXiv:2111.06606 [nucl-ex].
  23. J. Schukraft, A. Timmins, and S. A. Voloshin, “Ultra-relativistic nuclear collisions: event shape engineering”, Phys. Lett. B 719 (2013) 394–398, arXiv:1208.4563 [nucl-ex].
  24. P. Christiansen, “Event-Shape Engineering and Jet Quenching”, J. Phys. Conf. Ser. 736 (2016) 012023, arXiv:1606.07963 [hep-ph].
  25. ALICE Collaboration, J. Adam et al., “Event shape engineering for inclusive spectra and elliptic flow in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 93 (2016) 034916, arXiv:1507.06194 [nucl-ex].
  26. ALICE Collaboration, S. Acharya et al., “Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 777 (2018) 151–162, arXiv:1709.04723 [nucl-ex].
  27. ATLAS Collaboration, G. Aad et al., “Measurement of the correlation between flow harmonics of different order in lead-lead collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector”, Phys. Rev. C 92 (2015) 034903, arXiv:1504.01289 [hep-ex].
  28. ALICE Collaboration, S. Acharya et al., “Event-shape engineering for the D-meson elliptic flow in mid-central Pb–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 02 (2019) 150, arXiv:1809.09371 [nucl-ex].
  29. ALICE Collaboration, S. Acharya et al., “Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02~{}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02TeV”, Phys. Lett. B 813 (2021) 136054, arXiv:2005.11131 [nucl-ex].
  30. C. Beattie, G. Nijs, M. Sas, and W. van der Schee, “Hard probe path lengths and event-shape engineering of the quark-gluon plasma”, Phys. Lett. B 836 (2023) 137596, arXiv:2203.13265 [nucl-th].
  31. ALICE Collaboration, “Centrality determination in heavy ion collisions”, 2018. https://cds.cern.ch/record/2636623.
  32. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  33. ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
  34. ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
  35. J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
  36. ALICE Collaboration, P. Cortese et al., “ALICE technical design report on forward detectors: FMD, T0 and V0”, 2004. https://cds.cern.ch/record/781854.
  37. ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
  38. ALICE Collaboration, B. Abelev et al., “Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 03 (2012) 053, arXiv:1201.2423 [hep-ex].
  39. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual”, Eur. Phys. J. C 72 (2012) 1896, arXiv:1111.6097 [hep-ph].
  40. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm”, JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].
  41. OPAL Collaboration, M. Z. Akrawy et al., “A Study of the recombination scheme dependence of jet production rates and of αs⁢(MZ0)subscript𝛼𝑠subscript𝑀superscript𝑍0\alpha_{s}(M_{Z^{0}})italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_M start_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT )in hadronic Z0superscript𝑍0Z^{0}italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT decays”, Z. Phys. C 49 (1991) 375–384.
  42. M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119–126, arXiv:0707.1378 [hep-ph].
  43. M. Cacciari, J. Rojo, G. P. Salam, and G. Soyez, “Jet Reconstruction in Heavy Ion Collisions”, Eur. Phys. J. C 71 (2011) 1539, arXiv:1010.1759 [hep-ph].
  44. S. D. Ellis and D. E. Soper, “Successive combination jet algorithm for hadron collisions”, Phys. Rev. D 48 (1993) 3160–3166, arXiv:hep-ph/9305266.
  45. G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum. Meth. A 362 (1995) 487–498.
  46. T. Adye, “Unfolding algorithms and tests using RooUnfold”, in Proceedings of the PHYSTAT 2011 Workshop, pp. 313–318. CERN, Geneva, 2011. arXiv:1105.1160 [physics.data-an].
  47. P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].
  48. https://cds.cern.ch/record/1082634.
  49. M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions”, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021.
  50. STAR Collaboration, C. Adler et al., “Elliptic flow from two and four particle correlations in Au+Au collisions at sNN=130subscript𝑠NN130\sqrt{s_{\rm NN}}=130~{}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 130GeV”, Phys. Rev. C 66 (2002) 034904, arXiv:nucl-ex/0206001.
  51. S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions”, Z. Phys. C 70 (1996) 665–672, arXiv:hep-ph/9407282.
  52. A. Poskanzer and S. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions”, Phys. Rev. C 58 (1998) 1671–1678.
  53. G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, “Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum”, Phys. Rev. C 103 (2021) 054909, arXiv:2010.15134 [nucl-th].
  54. ALICE Collaboration, S. Acharya et al., “Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02TeV”, Phys. Lett. B 849 (2024) 138412, arXiv:2303.00592 [nucl-ex].
  55. Y. He, T. Luo, X.-N. Wang, and Y. Zhu, “Linear Boltzmann Transport for Jet Propagation in the Quark-Gluon Plasma: Elastic Processes and Medium Recoil”, Phys. Rev. C 91 (2015) 054908, arXiv:1503.03313 [nucl-th]. [Erratum: Phys.Rev.C 97, 019902 (2018)].
  56. Y. He, S. Cao, W. Chen, T. Luo, L.-G. Pang, and X.-N. Wang, “Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions”, Phys. Rev. C 99 (2019) 054911, arXiv:1809.02525 [nucl-th].
  57. J. H. Putschke et al., “The JETSCAPE framework”, arXiv:1903.07706 [nucl-th].
  58. L. Barreto, F. M. Canedo, M. G. Munhoz, J. Noronha, and J. Noronha-Hostler, “Jet cone radius dependence of RA⁢Asubscript𝑅𝐴𝐴R_{AA}italic_R start_POSTSUBSCRIPT italic_A italic_A end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at PbPb 5.02 TeV from JEWEL+TR⁢ENTosubscriptTRENTo\rm T_{R}ENToroman_T start_POSTSUBSCRIPT roman_R end_POSTSUBSCRIPT roman_ENTo+v-USPhydro”, arXiv:2208.02061 [nucl-th].
  59. I. Kolbé, “JEWEL on a (2+1)D background with applications to small systems and substructure”, arXiv:2303.14166 [nucl-th].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.