Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

All-optical GeV electron bunch generation in a laser-plasma accelerator via truncated-channel injection (2307.13689v2)

Published 25 Jul 2023 in physics.acc-ph and physics.plasm-ph

Abstract: We describe a simple scheme, truncated-channel injection, to inject electrons directly into the wakefield driven by a drive pulse guided by an all-optical plasma channel. We use this approach to generate dark-current-free 1.2 GeV, 4.5 % relative energy spread electron bunches with 120 TW laser pulses guided in a 110-mm-long hydrodynamic optical-field-ionized (HOFI) plasma channel. Our experiments and particle-in-cell simulations show that high-quality electron bunches were only obtained when the drive pulse was closely aligned with the channel axis, and was focused close to the density down-ramp formed at the channel entrance. Start-to-end simulations of the channel formation, and electron injection and acceleration show that increasing the channel length to 410 mm would yield 3.65 GeV bunches, with a slice energy spread $\sim 5 \times 10{-4}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. T. Tajima and J. M. Dawson, Laser Electron Accelerator, Physical Review Letters 43, 267 (1979).
  2. F. Albert and A. G. Thomas, Applications of laser wakefield accelerator-based light sources, Plasma Physics and Controlled Fusion 58, 103001 (2016).
  3. E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Reviews of Modern Physics 81, 1229 (2009-08).
  4. A. Gonsalves, B. Pollock, and W. Lu, Summary report of working group 1: Laser-plasma wakefield acceleration, AIP Conference Proceedings 1812, 030001 (2017).
  5. R. Shalloo, Hydrodynamic optical-field-ionized plasma waveguides for laser plasma accelerators, Ph.D. thesis, University of Oxford (2018).
  6. C. G. Durfee and H. M. Milchberg, Light pipe for high intensity laser pulses, Physical Review Letters 71, 2409 (1993).
  7. C. G. Durfee, F. Lynch, and H. M. Milchberg, Mode properties of a plasma waveguide for intense laser pulses: erratum, Optics Letters 20, 946 (1995).
  8. T. R. Clark and H. M. Milchberg, Time- and space-resolved density evolution of the plasma waveguide, Physical Review Letters 78, 2373 (1997).
  9. G. J. Hutchens, Approximate near-field blast theory: A generalized approach, Journal of Applied Physics 88, 3654 (2000).
  10. Z. Huang and K.-J. Kim, Review of x-ray free-electron laser theory, Physical Review Special Topics-Accelerators and Beams 10, 034801 (2007).
  11. code_saturne, https://www.code-saturne.org/cms/web/, accessed: 2023-07-24.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.