Insights from LHAASO and IceCube into the origin of the Galactic diffuse TeV--PeV emission (2307.12363v2)
Abstract: The high-energy diffuse gamma-ray emission and neutrino emission are expected from the Galactic plane, generated by hadronuclear interactions between cosmic rays (CR) and interstellar medium (ISM). Therefore, measurements of these diffuse emissions will provide important clues on the origin and nature of Galactic CRs. Comparing the latest observations of LHAASO and IceCube on the diffuse Galactic gamma-ray and neutrino emissions respectively, we suggest that the diffuse gamma-ray emission at multi-TeV energies contains a considerable contribution of a leptonic component. By modelling the gamma-ray halos powered by middle-aged pulsars in our Galaxy with taking into account the magnetic field configuration and the interstellar radiation field in the Galaxy, we demonstrate that the collective contribution of pulsar halos can account for the excess in the measured diffuse gamma-ray emission with respect to the predicted flux from CR-ISM interactions. The resulting one-dimensional profile along the Galactic longitude is also consistent with the observation.
- High-energy galactic gamma radiation from cosmic rays concentrated in spiral arms. Astrophys. J. 199, 54–60 (1975).
- Hunter, S. D. et al. EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane. Astrophys. J. 481, 205–240 (1997).
- Ackermann, M. et al. Fermi-LAT Observations of the Diffuse γ𝛾\gammaitalic_γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium. Astrophys. J. 750, 3 (2012).
- Atkins, R. et al. Evidence for TeV Gamma-Ray Emission from a Region of the Galactic Plane. Phys. Rev. Lett. 95, 251103 (2005).
- Abdo, A. A. et al. A Measurement of the Spatial Distribution of Diffuse TeV Gamma-Ray Emission from the Galactic Plane with Milagro. Astrophys. J. 688, 1078–1083 (2008).
- Abramowski, A. et al. Diffuse Galactic gamma-ray emission with H.E.S.S. Phys. Rev. D 90, 122007 (2014).
- Bartoli, B. et al. Study of the Diffuse Gamma-Ray Emission from the Galactic Plane with ARGO-YBJ. Astrophys. J. 806, 20 (2015).
- Amenomori, M. et al. First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies. Phys. Rev. Lett. 126, 141101 (2021).
- Alfaro, R. et al. Galactic Gamma-Ray Diffuse Emission at TeV Energies with HAWC Data. Astrophys. J. 961, 104 (2024).
- Stecker, F. W. Neutral-Pion Gamma Rays from the Galaxy and the Interstellar Gas Content. Astrophys. J. 185, 499–504 (1973).
- Strong, A. W. et al. Global Cosmic-ray-related Luminosity and Energy Budget of the Milky Way. Astrophys. J. Lett. 722, L58–L63 (2010).
- Diffuse Galactic gamma-ray flux at very high energy. Phys. Rev. D 98, 043003 (2018).
- Cao, Z. et al. The First LHAASO Catalog of Gamma-Ray Sources. Astrophys. J. Supp. 271, 25 (2024).
- Cao, Z. et al. Measurement of Ultra-High-Energy Diffuse Gamma-Ray Emission of the Galactic Plane from 10 TeV to 1 PeV with LHAASO-KM2A. Phys. Rev. Lett. 131, 151001 (2023).
- Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro. Phys. Rev. Lett. 120, 121101 (2018).
- Origin of Galactic Sub-PeV Diffuse Gamma-Ray Emission: Constraints from High-energy Neutrino Observations. Astrophys. J. Lett. 914, L7 (2021).
- Ultrahigh-energy diffuse gamma-ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D 105, 023002 (2022).
- Unresolved Sources Naturally Contribute to PeV Gamma-Ray Diffuse Emission Observed by Tibet ASγ𝛾\gammaitalic_γ. Astrophys. J. 928, 19 (2022).
- Constraints on the e±plus-or-minus{}^{{\pm}}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPT pair injection of pulsar halos: Implications from the Galactic diffuse multi-TeV gamma-ray emission. Phys. Rev. D 107, 103028 (2023).
- IceCube Collaboration et al. Observation of high-energy neutrinos from the galactic plane. Science 380, 1338–1343 (2023).
- On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. 278, 525–541 (1996).
- Signatures of high energy protons in pulsar winds. Astron. Astrophys. 402, 827–836 (2003).
- PeV Emission of the Crab Nebula: Constraints on the Proton Content in Pulsar Wind and Implications. Astrophys. J. 922, 221 (2021).
- Acero, F. et al. Development of the Model of Galactic Interstellar Emission for Standard Point-source Analysis of Fermi Large Area Telescope Data. Astrophys. J. Supp. 223, 26 (2016).
- The Gamma-Ray and Neutrino Sky: A Consistent Picture of Fermi-LAT, Milagro, and IceCube Results. Astrophys. J. Lett. 815, L25 (2015).
- The Milky Way revealed to be a neutrino desert by the IceCube Galactic plane observation. Nature Astronomy (2023).
- Massive stars as major factories of Galactic cosmic rays. Nature Astronomy 3, 561–567 (2019).
- Galactic Diffuse γ𝛾\gammaitalic_γ-Ray Emission from GeV to PeV Energies in Light of Up-to-date Cosmic-Ray Measurements. Astrophys. J. 957, 43 (2023).
- Vladimirov, A. E. et al. GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Physics Communications 182, 1156–1161 (2011).
- The TeV Gamma-Ray Luminosity of the Milky Way and the Contribution of H.E.S.S. Unresolved Sources to Very High Energy Diffuse Emission. Astrophys. J. 904, 85 (2020).
- Population synthesis of pulsar wind nebulae and pulsar halos in the Milky Way. Predicted contributions to the very-high-energy sky. Astron. Astrophys. 666, A7 (2022).
- Dekker, A. et al. Diffuse Ultra-High-Energy Gamma-Ray Emission From TeV Halos. arXiv e-prints arXiv:2306.00051 (2023).
- Giacinti, G. et al. Halo fraction in TeV-bright pulsar wind nebulae. Astron. Astrophys. 636, A113 (2020).
- The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005).
- Two-zone Diffusion of Electrons and Positrons from Geminga Explains the Positron Anomaly. Astrophys. J. 863, 30 (2018).
- Lessons from HAWC pulsar wind nebulae observations: The diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion. Phys. Rev. D 97, 123008 (2018).
- Understanding the Multiwavelength Observation of Geminga’s Tev Halo: The Role of Anisotropic Diffusion of Particles. Phys. Rev. Lett. 123, 221103 (2019).
- A New Model of the Galactic Magnetic Field. Astrophys. J. 757, 14 (2012).
- The Galactic Magnetic Field. Astrophys. J. Lett. 761, L11 (2012).
- Popescu, C. C. et al. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics. Mon. Not. R. Astron. Soc. 470, 2539–2558 (2017).
- Ma, X.-H. et al. Chapter 1 LHAASO Instruments and Detector technology. Chinese Physics C 46, 030001 (2022).
- On the Evolution of Pulsar Beams. Mon. Not. R. Astron. Soc. 298, 625–636 (1998).
- Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy 32, 193–316 (2011).
- H. E. S. S. Collaboration et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).
- Decomposing the Origin of TeV-PeV Emission from the Galactic Plane: Implications of Multimessenger Observations. Astrophys. J. Lett. 957, L6 (2023).
- On the Evolution of Supernova Remnants. Evolution of the Magnetic Field, Particles, Content, and Luminosity. Astrophys. J. 186, 249–266 (1973).
- The Expected High-Energy to Ultra–High-Energy Gamma-Ray Spectrum of the Crab Nebula. Astrophys. J. 396, 161 (1992).
- Benbow, W. et al. A Search for TeV Gamma-Ray Emission from Pulsar Tails by VERITAS. Astrophys. J. 916, 117 (2021).
- Trotta, R. et al. Constraints on Cosmic-ray Propagation Models from A Global Bayesian Analysis. Astrophys. J. 729, 106 (2011).
- Positron flux and γ𝛾\gammaitalic_γ-ray emission from Geminga pulsar and pulsar wind nebula. Mon. Not. R. Astron. Soc. 484, 3491–3501 (2019).
- Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes. Astron. Astrophys. 524, A51 (2010).
- Constraining the Magnetic Field in the TeV Halo of Geminga with X-Ray Observations. Astrophys. J. 875, 149 (2019).
- Pulsar Wind Nebulae in the Chandra Era. In Bassa, C., Wang, Z., Cumming, A. & Kaspi, V. M. (eds.) 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, vol. 983 of American Institute of Physics Conference Series, 171–185 (2008).
- Evidence of TeV halos around millisecond pulsars. Phys. Rev. D 105, 103013 (2022).
- Secondary cosmic-ray nucleus spectra disfavor particle transport in the Galaxy without reacceleration. J. Cosmol. Astropart. Phys. 2020, 027 (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.