Papers
Topics
Authors
Recent
2000 character limit reached

Learning Dynamic Query Combinations for Transformer-based Object Detection and Segmentation (2307.12239v2)

Published 23 Jul 2023 in cs.CV

Abstract: Transformer-based detection and segmentation methods use a list of learned detection queries to retrieve information from the transformer network and learn to predict the location and category of one specific object from each query. We empirically find that random convex combinations of the learned queries are still good for the corresponding models. We then propose to learn a convex combination with dynamic coefficients based on the high-level semantics of the image. The generated dynamic queries, named modulated queries, better capture the prior of object locations and categories in the different images. Equipped with our modulated queries, a wide range of DETR-based models achieve consistent and superior performance across multiple tasks including object detection, instance segmentation, panoptic segmentation, and video instance segmentation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.