Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Identifying contributors to supply chain outcomes in a multi-echelon setting: a decentralised approach (2307.12157v2)

Published 22 Jul 2023 in cs.LG

Abstract: Organisations often struggle to identify the causes of change in metrics such as product quality and delivery duration. This task becomes increasingly challenging when the cause lies outside of company borders in multi-echelon supply chains that are only partially observable. Although traditional supply chain management has advocated for data sharing to gain better insights, this does not take place in practice due to data privacy concerns. We propose the use of explainable artificial intelligence for decentralised computing of estimated contributions to a metric of interest in a multi-stage production process. This approach mitigates the need to convince supply chain actors to share data, as all computations occur in a decentralised manner. Our method is empirically validated using data collected from a real multi-stage manufacturing process. The results demonstrate the effectiveness of our approach in detecting the source of quality variations compared to a centralised approach using Shapley additive explanations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets