Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing supply chain security with automated machine learning (2406.13166v2)

Published 19 Jun 2024 in cs.LG, econ.GN, math.OC, and q-fin.EC

Abstract: The increasing scale and complexity of global supply chains have led to new challenges spanning various fields, such as supply chain disruptions due to long waiting lines at the ports, material shortages, and inflation. Coupled with the size of supply chains and the availability of vast amounts of data, efforts towards tackling such challenges have led to an increasing interest in applying machine learning methods in many aspects of supply chains. Unlike other solutions, ML techniques, including Random Forest, XGBoost, LightGBM, and Neural Networks, make predictions and approximate optimal solutions faster. This paper presents an automated ML framework to enhance supply chain security by detecting fraudulent activities, predicting maintenance needs, and forecasting material backorders. Using datasets of varying sizes, results show that fraud detection achieves an 88% accuracy rate using sampling methods, machine failure prediction reaches 93.4% accuracy, and material backorder prediction achieves 89.3% accuracy. Hyperparameter tuning significantly improved the performance of these models, with certain supervised techniques like XGBoost and LightGBM reaching up to 100% precision. This research contributes to supply chain security by streamlining data preprocessing, feature selection, model optimization, and inference deployment, addressing critical challenges and boosting operational efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haibo Wang (50 papers)
  2. Lutfu S. Sua (3 papers)
  3. Bahram Alidaee (7 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.