Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Fast and Stable Diffusion Inverse Solver with History Gradient Update (2307.12070v2)

Published 22 Jul 2023 in cs.CV

Abstract: Diffusion models have recently been recognised as efficient inverse problem solvers due to their ability to produce high-quality reconstruction results without relying on pairwise data training. Existing diffusion-based solvers utilize Gradient Descent strategy to get a optimal sample solution. However, these solvers only calculate the current gradient and have not utilized any history information of sampling process, thus resulting in unstable optimization progresses and suboptimal solutions. To address this issue, we propose to utilize the history information of the diffusion-based inverse solvers. In this paper, we first prove that, in previous work, using the gradient descent method to optimize the data fidelity term is convergent. Building on this, we introduce the incorporation of historical gradients into this optimization process, termed History Gradient Update (HGU). We also provide theoretical evidence that HGU ensures the convergence of the entire algorithm. It's worth noting that HGU is applicable to both pixel-based and latent-based diffusion model solvers. Experimental results demonstrate that, compared to previous sampling algorithms, sampling algorithms with HGU achieves state-of-the-art results in medical image reconstruction, surpassing even supervised learning methods. Additionally, it achieves competitive results on natural images.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.