A determinantal point process approach to scaling and local limits of random Young tableaux (2307.11885v2)
Abstract: We obtain scaling and local limit results for large random Young tableaux of fixed shape $\lambda0$ via the asymptotic analysis of a determinantal point process due to Gorin and Rahman (2019). More precisely, we prove: (1) an explicit description of the limiting surface of a uniform random Young tableau of shape $\lambda0$, based on solving a complex-valued polynomial equation; (2) a simple criteria to determine if the limiting surface is continuous in the whole domain; (3) and a local limit result in the bulk of a random Poissonized Young tableau of shape $\lambda0$. Our results have several consequences, for instance: they lead to explicit formulas for the limiting surface of $L$-shaped tableaux, generalizing the results of Pittel and Romik (2007) for rectangular shapes; they imply that the limiting surface for $L$-shaped tableaux is discontinuous for almost-every $L$-shape; and they give a new one-parameter family of infinite random Young tableaux, constructed from the so-called random infinite bead process.
- A. Aggarwal. Universality for lozenge tiling local statistics. Ann. Math. (2), 198(3):881–1012, 2023.
- Random sorting networks. Adv. Math., 215(2):839–868, 2007.
- The Dyson Brownian minor process. Ann. Inst. Fourier, 64(3):971–1009, 2014.
- P. Biane. Representations of symmetric groups and free probability. Adv. Math., 138(1):126–181, 1998.
- P. Biane. Approximate factorization and concentration for characters of symmetric groups. Internat. Math. Res. Notices, 4:179–192, 2001.
- P. Biane. Characters of symmetric groups and free cumulants. In Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001), volume 1815 of Lecture Notes in Math., pages 185–200. Springer, Berlin, 2003.
- A. Borodin and J. Kuan. Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math., 219(3):894–931, 2008.
- Periodic Pólya urns, the density method and asymptotics of Young tableaux. Ann. Probab., 48(4):1921–1965, 2020.
- Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc, 13:481–515, 2000.
- C. Boutillier. Modèles de dimères: comportements limites. PhD thesis, Université Paris Sud-Paris XI, 2005.
- C. Boutillier. The bead model and limit behaviors of dimer models. Ann. Probab., 37(1):107–142, 2009.
- Y. Baryshnikov and D. Romik. Enumeration formulas for Young tableaux in a diagonal strip. Isr. J. Math., 178:157–186, 2010.
- The cusp-Airy process. Electron. J. Probab., 21:50, 2016. Id/No 57.
- D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure. Springer, 2008.
- N. D. Elkies. On the sums ∑k=−∞∞(4k+1)−nsuperscriptsubscript𝑘superscript4𝑘1𝑛\sum_{k=-\infty}^{\infty}(4k+1)^{-n}∑ start_POSTSUBSCRIPT italic_k = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( 4 italic_k + 1 ) start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT. Am. Math. Mon., 110(7):561–573, 2003.
- A finitization of the bead process. Probab. Theory Relat. Fields, 152(1-2):321–356, 2012.
- The hook graphs of the symmetric group. Canadian Journal of Mathematics, 6:316–324, 1954.
- A probabilistic proof of a formula for the number of Young tableaux of a given shape. In Young Tableaux in Combinatorics, Invariant Theory, and Algebra, pages 17–22. Elsevier, 1982.
- A. Gordenko. Limit shapes of large skew young tableaux and a modification of the tasep process. Preprint arXiv:2009.10480, 2020.
- V. Gorin and M. Rahman. Random sorting networks: local statistics via random matrix laws. Probab. Theory Relat. Fields, 175(1-2):45–96, 2019.
- V. Gorin and J. Xu. Random sorting networks: edge limit. Preprint arXiv:2207.09000, 2022.
- Zeros of Gaussian analytic functions and determinantal point processes, volume 51 of Univ. Lect. Ser. Providence, RI: American Mathematical Society (AMS), 2009.
- A. Hora. The limit shape problem for ensembles of Young diagrams, volume 17 of SpringerBriefs Math. Phys. Tokyo: Springer, 2016.
- V. Ivanov and G. Olshanski. Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In Symmetric functions 2001: surveys of developments and perspectives, volume 74 of NATO Sci. Ser. II Math. Phys. Chem., pages 93–151. Kluwer Acad. Publ., Dordrecht, 2002.
- S. V. Kerov. Anisotropic Young diagrams and Jack symmetric functions. Funct. Anal. Appl., 34(1):41–51, 2000.
- R. Kenyon and A. Okounkov. Limit shapes and the complex Burgers equation. Acta Math., 199(2):263–302, 2007.
- R. Kenyon and I. Prause. Gradient variational problems in ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Duke Math. J., 171(14):3003–3022, 2022.
- S. Kerov and A. M. Vershik. The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm. SIAM J. Algebraic Discrete Methods, 7(1):116–124, 1986.
- A variational problem for random Young tableaux. Advances in Math., 26(2):206–222, 1977.
- Z. Li and M. Vuletić. Asymptotics of pure dimer coverings on rail-yard graphs, 2021. Preprint arXiv:2110.11393.
- P. Marchal. Rectangular Young tableaux and the Jacobi ensemble. In Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016, pages 839–850. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS), 2016.
- S. Mkrtchyan. Plane partitions with two-periodic weights. Lett. Math. Phys., 104(9):1053–1078, 2014.
- Ł. Maślanka and P. Śniady. Second class particles and limit shapes of evacuation and sliding paths for random tableaux. Doc. Math., 27:2183–2273, 2022.
- A. Okounkov and N. Reshetikhin. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer. Math. Soc., 16(3):581–603, 2003.
- A. Okounkov and N. Reshetikhin. The birth of a random matrix. Mosc. Math. J., 6(3):553–566, 2006.
- A. Okounkov and N. Reshetikhin. Random skew plane partitions and the Pearcey process. Commun. Math. Phys., 269(3):571–609, 2007.
- L. Petrov. Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes. Probab. Theory Relat. Fields, 160(3-4):429–487, 2014.
- B. Pittel and D. Romik. Limit shapes for random square Young tableaux. Adv. Appl. Math., 38(2):164–209, 2007.
- I. Prause. Random Young tableaux and the tangent plane method. In preparation, 2024+.
- D. Romik. Permutations with short monotone subsequences. Adv. Appl. Math., 37:501–510, 2006.
- D. Romik. The surprising mathematics of longest increasing subsequences, volume 4 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2015.
- R. Stanley. Two poset polytopes. Discrete Comput. Geom., 1:9–23, 1986.
- W. Sun. Dimer model, bead model and standard Young tableaux: finite cases and limit shapes, 2018. Preprint arXiv:1804.03414.
- Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR, 233(6):1024–1027, 1977.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.