Cluster profiles from beyond-the-QE CMB lensing mass maps (2307.11711v2)
Abstract: Clusters of galaxies, being the largest collapsed structures in the universe, offer valuable insights into the nature of cosmic evolution. Precise calibration of the mass of clusters can be obtained by extracting their gravitational lensing signal on the Cosmic Microwave Background (CMB) fluctuations. We extend and test here the performance achieved on cluster scales by the parameter-free, maximum a posteriori (MAP) CMB lensing reconstruction method, which has been shown to be optimal in the broader context of CMB lensing mass map and power spectrum estimation. In the context of cluster lensing, the lensing signal of other large-scale structures acts as an additional source of noise. We show here that by delensing the CMB fluctuations around each and every cluster, this noise variance is reduced according to expectations. We also demonstrate that the well-known bias in the temperature quadratic estimator in this regime, sourced by the strong non-Gaussianity of the signal, is almost entirely mitigated without any scale cuts. Being statistically speaking an optimal and blind lensing mass map reconstruction, the MAP estimator is a promising tool for the calibration of the masses of clusters.
- A. Vikhlinin et al., Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints, Astrophys. J. 692, 1060 (2009), arXiv:0812.2720 [astro-ph] .
- N. Sehgal et al., The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel’dovich Effect, Astrophys. J. 732, 44 (2011), arXiv:1010.1025 [astro-ph.CO] .
- S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological Parameters from Observations of Galaxy Clusters, Ann. Rev. Astron. Astrophys. 49, 409 (2011), arXiv:1103.4829 [astro-ph.CO] .
- P. A. R. Ade et al. (Planck), Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts, Astron. Astrophys. 571, A20 (2014), arXiv:1303.5080 [astro-ph.CO] .
- A. B. Mantz et al., Weighing the giants – IV. Cosmology and neutrino mass, Mon. Not. Roy. Astron. Soc. 446, 2205 (2015), arXiv:1407.4516 [astro-ph.CO] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 594, A24 (2016), arXiv:1502.01597 [astro-ph.CO] .
- T. de Haan et al. (SPT), Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey, Astrophys. J. 832, 95 (2016), arXiv:1603.06522 [astro-ph.CO] .
- S. Bocquet et al. (SPT), Cluster Cosmology Constraints from the 2500 deg22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope, Astrophys. J. 878, 55 (2019), arXiv:1812.01679 [astro-ph.CO] .
- P. S. Chaubal et al. (SPT), Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future, Astrophys. J. 931, 139 (2022), arXiv:2111.07491 [astro-ph.CO] .
- A. Saro et al. (DES), Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters, Mon. Not. Roy. Astron. Soc. 454, 2305 (2015), arXiv:1506.07814 [astro-ph.CO] .
- S. Andreon, Richness-based masses of rich and famous galaxy clusters, Astron. Astrophys. 587, A158 (2016), arXiv:1601.06912 [astro-ph.CO] .
- M. Arnaud, E. Pointecouteau, and G. W. Pratt, The Structural and scaling properties of nearby galaxy clusters. 2. The M-T relation, Astron. Astrophys. 441, 893 (2005), arXiv:astro-ph/0502210 .
- M. Arnaud, E. Pointecouteau, and G. W. Pratt, Calibration of the galaxy cluster M_500-Y_X relation with XMM-Newton, Astron. Astrophys. 474, L37 (2007), arXiv:0709.1561 [astro-ph] .
- K. Vanderlinde et al., Galaxy Clusters Selected with the Sunyaev-Zel’dovich Effect from 2008 South Pole Telescope Observations, Astrophys. J. 722, 1180 (2010), arXiv:1003.0003 [astro-ph.CO] .
- L. Salvati, M. Douspis, and N. Aghanim, Impact of systematics on cosmological parameters from future galaxy cluster surveys, Astron. Astrophys. 643, A20 (2020), arXiv:2005.10204 [astro-ph.CO] .
- L. Salvati et al., Combining Planck and SPT Cluster Catalogs: Cosmological Analysis and Impact on the Planck Scaling Relation Calibration, Astrophys. J. 934, 129 (2022), arXiv:2112.03606 [astro-ph.CO] .
- M. S. Madhavacheril, N. Battaglia, and H. Miyatake, Fundamental physics from future weak-lensing calibrated Sunyaev-Zel’dovich galaxy cluster counts, Phys. Rev. D 96, 103525 (2017), arXiv:1708.07502 [astro-ph.CO] .
- P. Ade et al. (Simons Observatory), The Simons Observatory: Science goals and forecasts, JCAP 02, 056, arXiv:1808.07445 [astro-ph.CO] .
- K. N. Abazajian et al. (CMB-S4), CMB-S4 Science Book, First Edition (2016) arXiv:1610.02743 [astro-ph.CO] .
- A. von der Linden et al., Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters, Mon. Not. Roy. Astron. Soc. 443, 1973 (2014), arXiv:1402.2670 [astro-ph.CO] .
- G. P. Smith et al., LoCuSS: Testing hydrostatic equilibrium in galaxy clusters, Mon. Not. Roy. Astron. Soc. 456, L74 (2016), arXiv:1511.01919 [astro-ph.CO] .
- F. Bellagamba et al., AMICO galaxy clusters in KiDS-DR3: weak-lensing mass calibration, Mon. Not. Roy. Astron. Soc. 484, 1598 (2019), arXiv:1810.02827 [astro-ph.CO] .
- H. Miyatake et al., Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel’dovich Clusters with the Hyper Suprime-Cam Survey, Astrophys. J. 875, 63 (2019), arXiv:1804.05873 [astro-ph.CO] .
- K. Umetsu, Cluster–galaxy weak lensing, Astron. Astrophys. Rev. 28, 7 (2020), arXiv:2007.00506 [astro-ph.CO] .
- M. R. Becker and A. V. Kravtsov, On the Accuracy of Weak Lensing Cluster Mass Reconstructions, Astrophys. J. 740, 25 (2011), arXiv:1011.1681 [astro-ph.CO] .
- A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Phys. Rept. 429, 1 (2006), arXiv:astro-ph/0601594 .
- M. S. Madhavacheril and J. C. Hill, Mitigating Foreground Biases in CMB Lensing Reconstruction Using Cleaned Gradients, Phys. Rev. D 98, 023534 (2018), arXiv:1802.08230 [astro-ph.CO] .
- S. Raghunathan et al. (DES), Mass Calibration of Optically Selected DES clusters using a Measurement of CMB-Cluster Lensing with SPTpol Data, Astrophys. J. 872, 170 (2019a), arXiv:1810.10998 [astro-ph.CO] .
- S. Patil, S. Raghunathan, and C. L. Reichardt, Suppressing the thermal sz-induced variance in cmb-cluster lensing estimators, The Astrophysical Journal 888, 9 (2019).
- W. Hu, Mapping the dark matter through the cmb damping tail, Astrophys. J. Lett. 557, L79 (2001), arXiv:astro-ph/0105424 .
- W. Hu and T. Okamoto, Mass reconstruction with cmb polarization, Astrophys. J. 574, 566 (2002), arXiv:astro-ph/0111606 .
- T. Okamoto and W. Hu, CMB lensing reconstruction on the full sky, Phys. Rev. D 67, 083002 (2003), arXiv:astro-ph/0301031 .
- N. Aghanim et al. (Planck), Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys. 641, A8 (2020), arXiv:1807.06210 [astro-ph.CO] .
- W. Hu, S. DeDeo, and C. Vale, Cluster Mass Estimators from CMB Temperature and Polarization Lensing, New J. Phys. 9, 441 (2007), arXiv:astro-ph/0701276 .
- E. J. Baxter et al. (DES, SPT), A measurement of CMB cluster lensing with SPT and DES year 1 data, Mon. Not. Roy. Astron. Soc. 476, 2674 (2018), arXiv:1708.01360 [astro-ph.CO] .
- J. E. Geach and J. A. Peacock, Cluster richness–mass calibration with cosmic microwave background lensing, Nature Astron. 1, 795 (2017), arXiv:1707.09369 [astro-ph.CO] .
- M. S. Madhavacheril et al. (ACT), The Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light, Astrophys. J. Lett. 903, L13 (2020), arXiv:2009.07772 [astro-ph.CO] .
- J.-B. Melin and J. G. Bartlett, Measuring cluster masses with CMB lensing: a statistical approach, Astron. Astrophys. 578, A21 (2015), arXiv:1408.5633 [astro-ph.CO] .
- T. Louis and D. Alonso, Calibrating Cluster Number Counts with CMB lensing, Phys. Rev. D 95, 043517 (2017), arXiv:1609.03997 [astro-ph.CO] .
- I. n. Zubeldia and A. Challinor, Cosmological constraints from Planck galaxy clusters with CMB lensing mass bias calibration, Mon. Not. Roy. Astron. Soc. 489, 401 (2019), arXiv:1904.07887 [astro-ph.CO] .
- I. n. Zubeldia and A. Challinor, Quantifying the statistics of CMB-lensing-derived galaxy cluster mass measurements with simulations, Mon. Not. Roy. Astron. Soc. 497, 5326 (2020), arXiv:2005.14607 [astro-ph.CO] .
- S. Raghunathan et al. (SPT, DES), Detection of CMB-Cluster Lensing using Polarization Data from SPTpol, Phys. Rev. Lett. 123, 181301 (2019b), arXiv:1907.08605 [astro-ph.CO] .
- K. Levy, S. Raghunathan, and K. Basu, A Foreground-Immune CMB-Cluster Lensing Estimator (2023) arXiv:2305.06326 [astro-ph.CO] .
- B. Horowitz, S. Ferraro, and B. D. Sherwin, Reconstructing Small Scale Lenses from the Cosmic Microwave Background Temperature Fluctuations, Mon. Not. Roy. Astron. Soc. 485, 3919 (2019), arXiv:1710.10236 [astro-ph.CO] .
- A. Lewis and L. King, Cluster masses from cmb and galaxy weak lensing, Phys. Rev. D 73, 063006 (2006), arXiv:astro-ph/0512104 .
- E. J. Baxter et al., A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope, Astrophys. J. 806, 247 (2015), arXiv:1412.7521 [astro-ph.CO] .
- N. Gupta and C. L. Reichardt, Mass Estimation of Galaxy Clusters with Deep Learning II. Cosmic Microwave Background Cluster Lensing, Astrophys. J. 923, 96 (2021), arXiv:2005.13985 [astro-ph.CO] .
- C. M. Hirata and U. Seljak, Analyzing weak lensing of the cosmic microwave background using the likelihood function, Phys. Rev. D 67, 043001 (2003a), arXiv:astro-ph/0209489 .
- C. M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization, Phys. Rev. D 68, 083002 (2003b), arXiv:astro-ph/0306354 .
- J. Yoo and M. Zaldarriaga, Improved estimation of cluster mass profiles from the cosmic microwave background, Phys. Rev. D 78, 083002 (2008), arXiv:0805.2155 [astro-ph] .
- J. Yoo, M. Zaldarriaga, and L. Hernquist, Lensing reconstruction of cluster-mass cross-correlation with cosmic microwave background polarization, Phys. Rev. D 81, 123006 (2010), arXiv:1005.0847 [astro-ph.CO] .
- J. Carron and A. Lewis, Maximum a posteriori CMB lensing reconstruction, Phys. Rev. D 96, 063510 (2017), arXiv:1704.08230 [astro-ph.CO] .
- M. Millea, E. Anderes, and B. D. Wandelt, Bayesian delensing of CMB temperature and polarization, Phys. Rev. D 100, 023509 (2019).
- M. Millea, E. Anderes, and B. D. Wandelt, Sampling-based inference of the primordial CMB and gravitational lensing, Phys. Rev. D 102, 123542 (2020).
- M. Millea and U. Seljak, Marginal unbiased score expansion and application to CMB lensing, Phys. Rev. D 105, 103531 (2022).
- L. Legrand and J. Carron, Lensing power spectrum of the cosmic microwave background with deep polarization experiments, Phys. Rev. D 105, 123519 (2022).
- R. Aurlien et al., Foreground separation and constraints on primordial gravitational waves with the PICO space mission, JCAP 06, 034, arXiv:2211.14342 [astro-ph.CO] .
- L. Legrand and J. Carron, Robust and efficient CMB lensing power spectrum from polarization surveys (2023) arXiv:2304.02584 [astro-ph.CO] .
- M. Reinecke, S. Belkner, and J. Carron, Improved CMB (de-)lensing using general spherical harmonic transforms (2023) arXiv:2304.10431 [astro-ph.CO] .
- J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. 462, 563 (1996), arXiv:astro-ph/9508025 .
- A. H. Barnett, J. Magland, and L. af Klinteberg, A Parallel Nonuniform Fast Fourier Transform Library Based on an “Exponential of Semicircle” Kernel, SIAM Journal on Scientific Computing 41, C479 (2019), arXiv:1808.06736 [math.NA] .
- A. H. Barnett, Aliasing error of the exp(β1−z2)𝛽1superscript𝑧2(\beta\sqrt{1-z^{2}})( italic_β square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) kernel in the nonuniform fast Fourier transform, arXiv e-prints , arXiv:2001.09405 (2020), arXiv:2001.09405 [math.NA] .
- M. H. Kesden, A. Cooray, and M. Kamionkowski, Lensing reconstruction with CMB temperature and polarization, Phys. Rev. D 67, 123507 (2003), arXiv:astro-ph/0302536 .
- M. Takada and B. Jain, The Three - point correlation function in cosmology, Mon. Not. Roy. Astron. Soc. 340, 580 (2003), arXiv:astro-ph/0209167 .
- M. Oguri and M. Takada, Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties, Phys. Rev. D 83, 023008 (2011), arXiv:1010.0744 [astro-ph.CO] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.