Papers
Topics
Authors
Recent
2000 character limit reached

Efficient quantum amplitude encoding of polynomial functions (2307.10917v6)

Published 20 Jul 2023 in quant-ph

Abstract: Loading functions into quantum computers represents an essential step in several quantum algorithms, such as quantum partial differential equation solvers. Therefore, the inefficiency of this process leads to a major bottleneck for the application of these algorithms. Here, we present and compare two efficient methods for the amplitude encoding of real polynomial functions on $n$ qubits. This case holds special relevance, as any continuous function on a closed interval can be uniformly approximated with arbitrary precision by a polynomial function. The first approach relies on the matrix product state representation. We study and benchmark the approximations of the target state when the bond dimension is assumed to be small. The second algorithm combines two subroutines. Initially we encode the linear function into the quantum registers with a shallow sequence of multi-controlled gates that loads the linear function's Hadamard-Walsh series, exploring how truncating the Hadamard-Walsh series of the linear function affects the final fidelity. Applying the inverse discrete Hadamard-Walsh transform transforms the series coefficients into an amplitude encoding of the linear function. Then, we use this construction as a building block to achieve a block encoding of the amplitudes corresponding to the linear function on $k_0$ qubits and apply the quantum singular value transformation that implements a polynomial transformation to the block encoding of the amplitudes. This unitary together with the Amplitude Amplification algorithm will enable us to prepare the quantum state that encodes the polynomial function on $k_0$ qubits. Finally we pad $n-k_0$ qubits to generate an approximated encoding of the polynomial on $n$ qubits, analyzing the error depending on $k_0$. In this regard, our methodology proposes a method to improve the state-of-the-art complexity by introducing controllable errors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. “Quantum supremacy using a programmable superconducting processor”. Nature 574, 505–510 (2019).
  2. “Strong quantum computational advantage using a superconducting quantum processor”. Physical Review Letters127 (2021).
  3. “Quantum computational advantage using photons”. Science 370, 1460–1463 (2020).
  4. “Logical quantum processor based on reconfigurable atom arrays”. Nature (2023).
  5. “Quantum algorithm for linear systems of equations”. Phys. Rev. Lett. 103, 150502 (2009).
  6. “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision”. SIAM Journal on Computing 46, 1920–1950 (2017).
  7. “Quantum algorithm for data fitting”. Phys. Rev. Lett. 109, 050505 (2012).
  8. “Preconditioned quantum linear system algorithm”. Phys. Rev. Lett. 110, 250504 (2013).
  9. “Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2d target”. Quantum Information Processing16 (2017).
  10. “Quantum computational finance: Monte carlo pricing of financial derivatives”. Phys. Rev. A 98, 022321 (2018).
  11. “Option pricing using quantum computers”. Quantum 4, 291 (2020).
  12. “Toward pricing financial derivatives with an IBM quantum computer”. Physical Review Research3 (2021).
  13. “Efficient Hamiltonian simulation for solving option price dynamics”. Phys. Rev. Research 5, 043220 (2023).
  14. “Quantum computing for finance”. Nature Reviews Physics (2023).
  15. “Quantum computing for finance: Overview and prospects”. Reviews in Physics 4, 100028 (2019).
  16. “Quantum computing for finance: State-of-the-art and future prospects”. IEEE Transactions on Quantum Engineering 1, 1–24 (2020).
  17. “Quadratic quantum speedup in evaluating bilinear risk functions” (2023). arXiv:2304.10385.
  18. “A quantum algorithm to solve nonlinear differential equations” (2008). arXiv:0812.4423.
  19. “Quantum algorithm for linear differential equations with exponentially improved dependence on precision”. Communications in Mathematical Physics 356, 1057–1081 (2017).
  20. “Efficient quantum algorithm for dissipative nonlinear differential equations”. Proceedings of the National Academy of Sciences118 (2021).
  21. “Quantum algorithms for solving ordinary differential equations via classical integration methods”. Quantum 5, 502 (2021).
  22. Juan José García-Ripoll. “Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations”. Quantum 5, 431 (2021).
  23. “Quantum approximated cloning-assisted density matrix exponentiation” (2023). arXiv:2311.11751.
  24. Dong An, Di Fang, Stephen Jordan, Jin-Peng Liu, Guang Hao Low, and Jiasu Wang, “Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation,” (2022). arXiv:2305.11352.
  25. Dylan Lewis, Stephan Eidenbenz, Balasubramanya Nadiga, and Yiğit Subaşı, “Limitations for quantum algorithms to solve turbulent and chaotic systems,” (2023) arXiv:2307.09593.
  26. Yen Ting Lin, Robert B. Lowrie, Denis Aslangil, Yiğit Subaşı, and Andrew T. Sornborger , “Koopman-von Neumann mechanics and the Koopman representation: A perspective on solving nonlinear dynamical systems with quantum computers,” (2022) arXiv:2202.02188.
  27. Shi Jin, Nana Liu, and Yue Yu, “Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations,” Journal of Computational Physics, vol. 487, p. 112149, (2023).
  28. Ilon Joseph, “Koopman–von Neumann approach to quantum simulation of nonlinear classical dynamics,” Phys. Rev. Res., vol. 2, p. 043102, (2020).
  29. David Jennings, Matteo Lostaglio, Robert B. Lowrie, Sam Pallister, and Andrew T. Sornborger, “The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts,” (2023) arXiv:2309.07881.
  30. David Jennings, Matteo Lostaglio, Sam Pallister, Andrew T Sornborger, and Yiğit Subaşı, “Efficient quantum linear solver algorithm with detailed running costs,” (2023) arXiv:2305.11352.
  31. Javier Gonzalez-Conde and Andrew T. Sornborger “Mixed Quantum-Semiclassical Simulation,” (2023) arXiv:2308.16147.
  32. Dimitrios Giannakis, Abbas Ourmazd, Philipp Pfeffer, Joerg Schumacher, and Joanna Slawinska, “Embedding classical dynamics in a quantum computer,” Phys. Rev. A, vol. 105, p. 052404, (2022).
  33. François Gay-Balmaz and Cesare Tronci, “Evolution of hybrid quantum–classical wavefunctions,” Physica D: Nonlinear Phenomena, vol. 440, p. 133450, (2022).
  34. Denys I. Bondar, François Gay-Balmaz and Cesare Tronci, “Koopman wavefunctions and classical–quantum correlation dynamics,” Proceedings of the Royal Society A, vol. 475, no. 2229, p. 20180879, (2019).
  35. John Preskill. “Quantum computing in the NISQ era and beyond”. Quantum 2, 79 (2018).
  36. “Supervised learning with quantum-enhanced feature spaces”. Nature 567, 209–212 (2019).
  37. “A rigorous and robust quantum speed-up in supervised machine learning”. Nature Physics 17, 1013–1017 (2021).
  38. “Effect of data encoding on the expressive power of variational quantum-machine-learning models”. Phys. Rev. A 103, 032430 (2021).
  39. “Quantum models as kernel methods”. Pages 217–245. Springer International Publishing. Cham (2021).
  40. “Quantum embeddings for machine learning” (2020). arXiv:2001.03622.
  41. “Quantum state preparation without coherent arithmetic” (2022). arXiv:2210.14892.
  42. “On efficient quantum block encoding of pseudo-differential operators”. Quantum 7, 1031 (2023).
  43. “Transformation of quantum states using uniformly controlled rotations” (2004). arXiv:quant-ph/0407010.
  44. “Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis” (2023). arXiv:2108.06150.
  45. “Low-depth quantum state preparation”. Phys. Rev. Res. 3, 043200 (2021).
  46. “A divide-and-conquer algorithm for quantum state preparation”. Scientific Reports11 (2021).
  47. “State preparation based on quantum phase estimation” (2019). arXiv:1912.05335.
  48. Lov K. Grover. “Synthesis of quantum superpositions by quantum computation”. Phys. Rev. Lett. 85, 1334–1337 (2000).
  49. “Black-box quantum state preparation without arithmetic”. Phys. Rev. Lett. 122, 020502 (2019).
  50. Johannes Bausch. “Fast Black-Box Quantum State Preparation”. Quantum 6, 773 (2022).
  51. “Creating superpositions that correspond to efficiently integrable probability distributions” (2002). arXiv:quant-ph/0208112.
  52. “Preparing arbitrary continuous functions in quantum registers with logarithmic complexity” (2022). arXiv:2205.00519.
  53. “Inverse-coefficient black-box quantum state preparation”. New Journal of Physics 24, 103004 (2022).
  54. “Quantum state preparation with optimal circuit depth: Implementations and applications”. Phys. Rev. Lett. 129, 230504 (2022).
  55. “Quantum algorithms for approximate function loading”. Phys. Rev. Research. 5, 033114 (2023).
  56. “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators”. Phys. Rev. Res. 4, 023136 (2022).
  57. “Quantum generative adversarial networks for learning and loading random distributions”. npj Quantum Information 5, 103 (2019).
  58. “Efficient quantum state preparation with walsh series” (2023). arXiv:2307.08384.
  59. “Linear-depth quantum circuits for loading fourier approximations of arbitrary functions” . In Quantum Science and Technology (Vol. 9, Issue 1, p. 015002) (2023).
  60. Lars Grasedyck. “Polynomial approximation in hierarchical tucker format by vector - tensorization” (2010). Mathematics, Computer Science
  61. “Efficient quantum circuits for accurate state preparation of smooth, differentiable functions” (2020). arXiv:2005.04351.
  62. “Entanglement properties of quantum superpositions of smooth, differentiable functions” (2020). arXiv:2009.09096.
  63. “Quantum state preparation using tensor networks”. Quantum Science and Technology 8, 035027 (2023).
  64. “Data compression for quantum machine learning”. Phys. Rev. Res. 4, 043007 (2022).
  65. “Real- and imaginary-time evolution with compressed quantum circuits”. PRX Quantum2 (2021).
  66. “Multigrid renormalization”. Journal of Computational Physics 372, 587–602 (2018).
  67. “Variational quantum algorithms for nonlinear problems”. Phys. Rev. A 101, 010301 (2020).
  68. “A quantum-inspired approach to exploit turbulence structures”. Nature Computational Science 2, 30–37 (2022).
  69. “Quantum state preparation of normal distributions using matrix product states” (2023). arXiv:2303.01562.
  70. “A generalized quantum inner product and applications to financial engineering” (2022). arXiv:2201.09845.
  71. “Methodology of resonant equiangular composite quantum gates”. Phys. Rev. X 6, 041067 (2016).
  72. “Optimal hamiltonian simulation by quantum signal processing”. Phys. Rev. Lett. 118, 010501 (2017).
  73. “Hamiltonian Simulation by Qubitization”. Quantum 3, 163 (2019).
  74. “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics”. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theoryof Computing ACM (2019).
  75. “A cs guide to the quantum singular value transformation” (2023). arXiv:2302.14324.
  76. “Efficient phase-factor evaluation in quantum signal processing”. Phys. Rev. A 103, 042419 (2021).
  77. “Nonlinear transformation of complex amplitudes via quantum singular value transformation” (2021) arXiv:2107.10764
  78. Arthur G. Rattew and Patrick Rebentrost “Non-Linear Transformations of Quantum Amplitudes: Exponential Improvement, Generalization, and Applications” (2023) arXiv:2309.09839.
  79. W. Fraser. “A Survey of Methods of Computing Minimax and Near-Minimax Polynomial Approximations for Functions of a Single Independent Variable”, Journal of the ACM 12, 295 (1965)
  80. E. Y. Remez, “General computational methods of Chebyshev approximation: The problems with linear real parameters”, US Atomic Energy Commission, Division of Technical Information (1962).
  81. Román Orús. “A practical introduction to tensor networks: Matrix product states and projected entangled pair states”. Annals of Physics (New York) (2014).
  82. Guifré Vidal. “Efficient classical simulation of slightly entangled quantum computations”. Physical Review Letters91 (2003).
  83. “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems”. Advances in Physics 57, 143–224 (2008).
  84. “Matrix product state representations”. Quantum Info. Comput. 7, 5, 401–430. (2007)
  85. Shi-Ju Ran. “Encoding of matrix product states into quantum circuits of one- and two-qubit gates”. Physical Review A101 (2020).
  86. “Preparation of matrix product states with log-depth quantum circuits”. Phys. Rev. Lett. 132, 040404 (2024).
  87. J. L. Walsh. “A closed set of normal orthogonal functions”. American Journal of Mathematics 45, 5–24 (1923)..
  88. “Singular value decomposition and principal component analysis”. Pages 91–109. Springer US. Boston, MA (2003).
  89. Ivan Oseledets. “Constructive representation of functions in low-rank tensor formats”. Constructive Approximation37 (2010).
  90. “Entropy scaling and simulability by matrix product states”. Physical Review Letters100 (2008).
  91. Ulrich Schollwöck. “The density-matrix renormalization group in the age of matrix product states”. Annals of Physics 326, 96–192 (2011).
  92. “The approximation of one matrix by another of lower rank”. Psychometrika 1, 211–218 (1936).
  93. “Decomposition of matrix product states into shallow quantum circuits” (2022). arXiv:2209.00595.
  94. “Sequential generation of entangled multiqubit states”. Phys. Rev. Lett. 95, 110503 (2005).
  95. “Minimal universal two-qubit controlled-NOT-based circuits”. Physical Review A69 (2004).
  96. “Elementary gates for quantum computation”. Physical Review A 52, 3457–3467 (1995).
  97. “Efficient quantum circuits for diagonal unitaries without ancillas”. New Journal of Physics 16, 033040 (2014).
  98. “The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation”. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:14. Dagstuhl, Germany (2019). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  99. T. Constantinescu. “Schur parameters, factorization, and dilation problems”. Operator Theory: Advances and Applications. Birkhäuser Verlag.  (1996).
  100. “Quantum circuits design for evaluating transcendental functions based on a function-value binary expansion method”. Quantum Information Processing19 (2020).
  101. Chung-Kwong Yuen. “Function approximation by walsh series”. IEEE Transactions on Computers C-24, 590–598 (1975).
  102. “Finding angles for quantum signal processing with machine precision” (2020). arXiv:2003.02831.
  103. Jeongwan Haah. “Product Decomposition of Periodic Functions in Quantum Signal Processing”. Quantum 3, 190 (2019).
Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.