Papers
Topics
Authors
Recent
2000 character limit reached

Relic Gravitational Waves from the Chiral Plasma Instability in the Standard Cosmological Model (2307.09385v3)

Published 18 Jul 2023 in astro-ph.CO, gr-qc, and hep-ph

Abstract: In the primordial plasma, at temperatures above the scale of electroweak symmetry breaking, the presence of chiral asymmetries is expected to induce the development of helical hypermagnetic fields through the phenomenon of chiral plasma instability. It results in magnetohydrodynamic turbulence due to the high conductivity and low viscosity and sources gravitational waves that survive in the universe today as a stochastic polarized gravitational wave background. In this article, we show that this scenario only relies on Standard Model physics, and therefore the observable signatures, namely the relic magnetic field and gravitational background, are linked to a single parameter controlling the initial chiral asymmetry. We estimate the magnetic field and gravitational wave spectra, and validate these estimates with 3D numerical simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. E. W. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980), [Erratum: Nucl.Phys.B 195, 542 (1982)].
  2. M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
  3. G. Servant and S. Tulin, (2013), arXiv:1304.3464.
  4. Phys.Rev.Lett. 84, 4039 (2000), arXiv:hep-ph/9907562.
  5. H. Murayama and A. Pierce, Phys. Rev. Lett. 89, 271601 (2002), arXiv:hep-ph/0206177.
  6. Phys.Lett. B256, 484 (1991).
  7. M. Joyce and M. E. Shaposhnikov, Phys.Rev.Lett. 79, 1193 (1997), arXiv:astro-ph/9703005.
  8. Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013), arXiv:1302.2125.
  9. A. Neronov and I. Vovk, Science 328, 73 (2010), arXiv:1006.3504.
  10. T. Vachaspati, Rept. Prog. Phys. 84, 074901 (2021), arXiv:2010.10525.
  11. Mod. Phys. Lett. A 1, 593 (1986).
  12. Astrophys. J. 911, 110 (2021), arXiv:2101.08178.
  13. M. M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010), arXiv:0908.4089.
  14. N. Barnaby et al., Phys. Rev. D 86, 103508 (2012), arXiv:1206.6117.
  15. JCAP 06, 031 (2016), arXiv:1603.01287.
  16. JHEP 01, 053 (2019), arXiv:1811.01950.
  17. Phys. Rev. Res. 5, L022028 (2023), arXiv:2302.00512.
  18. Phys. Rev. D 108, 063529 (2023), 2304.06612.
  19. J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).
  20. S. L. Adler, Phys. Rev. 177, 2426 (1969).
  21. A. Vilenkin, Phys. Rev. D 22, 3080 (1980).
  22. Phys. Rev. Lett. 108, 031301 (2012), arXiv:1109.3350.
  23. Phys. Rev. Lett. 109, 111602 (2012), arXiv:1204.3604.
  24. Phys. Rev. D 92, 043004 (2015), arXiv:1504.04854.
  25. A. Brandenburg et al., Astrophys. J. Lett. 845, L21 (2017), arXiv:1707.03385.
  26. Prog. Part. Nucl. Phys. 129, 104016 (2023), arXiv:2207.09184.
  27. K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016), arXiv:1606.08891.
  28. K. Kamada and A. J. Long, Phys. Rev. D 94, 123509 (2016), arXiv:1610.03074.
  29. D. Bödeker and D. Schröder, JCAP 05, 010 (2019), arXiv:1902.07220.
  30. Phys. Rev. D 100, 035011 (2019), arXiv:1903.06211.
  31. T. Hatori, JPSJ 53, 2539 (1984).
  32. Phys. Rev. D 76, 083002 (2007), arXiv:0705.1733.
  33. Geophys. Astrophys. Fluid Dynamics 114, 130 (2020), arXiv:1807.05479.
  34. M. Maggiore, Phys. Rept. 331, 283 (2000), arXiv:gr-qc/9909001.
  35. Phys. Rev. Lett. 118, 121101 (2017), arXiv:1612.02029, [Erratum: Phys.Rev.Lett. 119, 029901 (2017)].
  36. N. Bartolo et al., JCAP 11, 034 (2018), arXiv:1806.02819.
  37. J. Baker et al., (2019), arXiv:1907.06482.
  38. C. Caprini et al., JCAP 11, 017 (2019), arXiv:1906.09244.
  39. D. J. Reardon et al., Astrophys. J. Lett. 951 (2023), arXiv:2306.16215.
  40. Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214.
  41. NANOGrav, A. Afzal et al., Astrophys. J. Lett. 951 (2023), arXiv:2306.16219.
  42. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216.
  43. B. Chandra Joshi et al., J. Astrophys. Astron. 43, 98 (2022), arXiv:2207.06461.
  44. M. T. Miles et al., Mon. Not. Roy. Astron. Soc. 519, 3976 (2023), arXiv:2212.04648.
  45. N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414.
  46. T. Fujita and K. Kamada, Phys. Rev. D 93, 083520 (2016), arXiv:1602.02109.
  47. M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57, 2186 (1998), arXiv:hep-ph/9710234.
  48. (2022), arXiv:2208.03237.
  49. The pencil code. doi:10.5281/zenodo.2315093. https://github.com/pencil-code.
  50. JHEP 11, 001 (2000), arXiv:hep-ph/0010177.
  51. I. Rogachevskii et al., Astrophys. J. 846, 153 (2017), arXiv:1705.00378.
  52. Pencil Code Collaboration, A. Brandenburg et al., J. Open Source Softw. 6, 2807 (2021), arXiv:2009.08231.
  53. Astrophys. J. 922, 192 (2021), arXiv:2107.12333.
  54. Phys. Rev. D 102, 083512 (2020), arXiv:1903.08585.
  55. Phys. Rev. D 105, 123502 (2022), arXiv:2201.05630.
  56. R. Sharma and A. Brandenburg, Phys. Rev. D 106, 103536 (2022), arXiv:2206.00055.
  57. A. R. Zhitnitsky, Phys. Rev. D 99, 103518 (2019), arXiv:1902.07737.
  58. Phys. Rev. D 101, 045001 (2020), arXiv:1907.04890.
  59. Datasets for Relic gravitational waves from the chiral plasma instability in the standard cosmological model, doi:10.5281/zenodo.8157463 (v2023.07.17); see also http://norlx65.nordita.org/~brandenb/proj/GWfromSM/ for easier access .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.