Papers
Topics
Authors
Recent
2000 character limit reached

LEST: Large-scale LiDAR Semantic Segmentation with Transformer

Published 14 Jul 2023 in cs.CV | (2307.09367v1)

Abstract: Large-scale LiDAR-based point cloud semantic segmentation is a critical task in autonomous driving perception. Almost all of the previous state-of-the-art LiDAR semantic segmentation methods are variants of sparse 3D convolution. Although the Transformer architecture is becoming popular in the field of natural language processing and 2D computer vision, its application to large-scale point cloud semantic segmentation is still limited. In this paper, we propose a LiDAR sEmantic Segmentation architecture with pure Transformer, LEST. LEST comprises two novel components: a Space Filling Curve (SFC) Grouping strategy and a Distance-based Cosine Linear Transformer, DISCO. On the public nuScenes semantic segmentation validation set and SemanticKITTI test set, our model outperforms all the other state-of-the-art methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.