Papers
Topics
Authors
Recent
2000 character limit reached

Solving Schrödinger Equation with a Language Model

Published 18 Jul 2023 in quant-ph | (2307.09343v4)

Abstract: Accurately solving the Schr\"odinger equation for intricate systems remains a prominent challenge in physical sciences. A paradigm-shifting approach to address this challenge involves the application of artificial intelligence techniques. In this study, we introduce a machine-learning model named QiankunNet, based on the transformer architecture employed in LLMs. By incorporating the attention mechanism, QiankunNet adeptly captures intricate quantum correlations, which enhances its expressive power. The autoregressive attribute of QiankunNet allows for the adoption of an exceedingly efficient sampling technique to estimate the total energy, facilitating the model training process. Additionally, performance of QiankunNet can be further improved via a pre-training process. This work not only demonstrates the power of artificial intelligence in quantum mechanics but also signifies a pivotal advancement in extending the boundary of systems which can be studied with a full-configuration-interaction accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 (Curran Associates Inc., Red Hook, NY, USA, 2017), p. 6000–6010.
  2. OpenAI blog (2018).
  3. OpenAI blog 1, 9 (2019).
  4. Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20 (Curran Associates Inc., Red Hook, NY, USA, 2020).
  5. arXiv:2010.11929 (2020).
  6. ICLR 2022 (2022).
  7. Nature 596, 583 (2021).
  8. Nat. Mach. Intell. 4, 227 (2022).
  9. Nat. Mach. Intell. 5, 485 (2023).
  10. Nature (2023).
  11. Phys. Rev. 46, 618 (1934).
  12. Rev. Mod. Phys. 79, 291 (2007).
  13. S. R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).
  14. S. R. White, Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993).
  15. W. L. McMillan, Ground state of liquid he4superscripthe4{\mathrm{he}}^{4}roman_he start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. Phys. Rev. 138, A442 (1965).
  16. Rev. Mod. Phys. 73, 33 (2001).
  17. Chem. Rev 112, 263 (2012).
  18. Science 355, 602 (2017).
  19. Phys. Rev. X 7, 021021 (2017).
  20. Phys. Rev. X 8, 011006 (2018).
  21. Phys. Rev. B 106, 205136 (2022).
  22. Nat. Commun. 8, 662 (2017).
  23. Phys. Rev. Lett. 127, 170601 (2021).
  24. Nat. Chem. 12, 891 (2020).
  25. Phys. Rev. Res. 2, 033429 (2020).
  26. arXiv:2211.13672 (2022).
  27. Nat. Commun. 11, 2368 (2020).
  28. Nat. Mach. Intelle. 4, 351 (2022).
  29. Machine Learning: Science and Technology (2023).
  30. Phys. Rev. Lett. 130, 236401 (2023).
  31. Zeitschrift für Physik 47, 631 (1928).
  32. Phys. Rev. Lett. 124, 020503 (2020).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.