Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subfield subcodes of projective Reed-Muller codes (2307.09298v2)

Published 18 Jul 2023 in cs.IT, math.AC, and math.IT

Abstract: Explicit bases for the subfield subcodes of projective Reed-Muller codes over the projective plane and their duals are obtained. In particular, we provide a formula for the dimension of these codes. For the general case over the projective space, we generalize the necessary tools to deal with this case as well: we obtain a universal Gr\"obner basis for the vanishing ideal of the set of standard representatives of the projective space and we show how to reduce any monomial with respect to this Gr\"obner basis. With respect to the parameters of these codes, by considering subfield subcodes of projective Reed-Muller codes we obtain long linear codes with good parameters over a small finite field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. Bierbrauer. The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr., 25(2):189–206, 2002.
  2. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
  3. S. D. Cohen. Primitive elements and polynomials with arbitrary trace. Discrete Math., 83(1):1–7, 1990.
  4. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra.
  5. P. Delsarte. On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Inform. Theory, IT-21(5):575–576, 1975.
  6. D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
  7. On the distance of stabilizer quantum codes from J𝐽Jitalic_J-affine variety codes. Quantum Inf. Process., 16(4):Paper No. 111, 32, 2017.
  8. New binary and ternary LCD codes. IEEE Trans. Inform. Theory, 65(2):1008–1016, 2019.
  9. C. Galindo and F. Hernando. Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr., 76(1):89–100, 2015.
  10. Stabilizer quantum codes from J𝐽Jitalic_J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process., 14(9):3211–3231, 2015.
  11. S. R. Ghorpade. A note on Nullstellensatz over finite fields. In Contributions in algebra and algebraic geometry, volume 738 of Contemp. Math., pages 23–32. Amer. Math. Soc., 2019.
  12. Entanglement-assisted quantum error-correcting codes from subfield subcodes of projective Reed–Solomon codes. Comput. Appl. Math., 42(363), 2023.
  13. M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007. Accessed on 2022-07-23.
  14. Subfield-subcodes of generalized toric codes. In 2010 IEEE International Symposium on Information Theory, pages 1125–1129, 2010.
  15. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge University Press, Cambridge, 2003.
  16. Evaluation codes and their basic parameters. Des. Codes Cryptogr., 89(2):269–300, 2021.
  17. G. Lachaud. The parameters of projective Reed-Muller codes. Discrete Math., 81(2):217–221, 1990.
  18. D.-J. Mercier and R. Rolland. Polynômes homogènes qui s’annulent sur l’espace projectif Pm⁢(𝐅q)superscriptP𝑚subscript𝐅𝑞{\rm P}^{m}({\bf F}_{q})roman_P start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( bold_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). J. Pure Appl. Algebra, 124(1-3):227–240, 1998.
  19. N. Nakashima and H. Matsui. Decoding of projective reed-muller codes by dividing a projective space into affine spaces. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E99.A(3):733–741, 2016.
  20. A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991.
Citations (2)

Summary

We haven't generated a summary for this paper yet.