Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Statistics of extreme events in integrable turbulence (2307.08884v2)

Published 17 Jul 2023 in nlin.PS and nlin.SI

Abstract: We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in integrable turbulence described by the one-dimensional focusing nonlinear Schr\"odinger equation (fNLSE). This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and analytically evaluating the kurtosis of the emerging random nonlinear wave field in terms of the spectral density of states of the corresponding soliton gas. We then apply the general result to two fundamental scenarios of the generation of integrable turbulence: (i) the asymptotic development of the spontaneous (noise induced) modulational instability of a plane wave, and (ii) the long-time evolution of strongly nonlinear, partially coherent waves. In both cases, involving the bound state soliton gas dynamics, the analytically obtained values of the kurtosis are in perfect agreement with those inferred from direct numerical simulations of the the fNLSE, providing the long-awaited theoretical explanation of the respective rogue wave statistics. Additionally, the evolution of a particular non-bound state gas is considered providing important insights related to the validity of the so-called virial theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. V. E. Zakharov, Turbulence in Integrable Systems, Stud. Appl. Math. 122, 219 (2009).
  2. D. S. Agafontsev and V. E. Zakharov, Integrable turbulence and formation of rogue waves, Nonlinearity 28, 2791 (2015).
  3. D. S. Agafontsev and V. E. Zakharov, Integrable turbulence generated from modulational instability of cnoidal waves, Nonlinearity 29, 3551 (2016).
  4. D. S. Agafontsev, S. Randoux, and P. Suret, Extreme rogue wave generation from narrowband partially coherent waves, Phys. Rev. E 103, 032209 (2021).
  5. P. Walczak, S. Randoux, and P. Suret, Optical Rogue Waves in Integrable Turbulence, Phys. Rev. Lett. 114, 143903 (2015).
  6. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation No. 16 (Society for Industrial and Applied Mathematics, Philadelphia, 2010).
  7. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series No. 149 (Cambridge University Press, Cambridge ; New York, 1991).
  8. P. A. E. M. Janssen, Nonlinear Four-Wave Interactions and Freak Waves, J. Phys. Oceanogr. 33, 863 (2003).
  9. N. Mori, M. Onorato, and P. A. E. M. Janssen, On the Estimation of the Kurtosis in Directional Sea States for Freak Wave Forecasting, J. Phys. Oceanogr. 41, 1484 (2011).
  10. G. Dematteis, T. Grafke, and E. Vanden-Eijnden, Rogue waves and large deviations in deep sea, PNAS 115, 855 (2018).
  11. S. Nazarenko, Wave Turbulence, 1st ed., Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, 2011).
  12. G. A. El, Soliton gas in integrable dispersive hydrodynamics, J. Stat. Mech. 2021, 114001 (2021).
  13. V. Zakharov, Kinetic equation for solitons, Sov. Phys. JETP 33, 538 (1971).
  14. G. El, The thermodynamic limit of the Whitham equations, Phys. Lett. A 311, 374 (2003).
  15. G. A. El and A. M. Kamchatnov, Kinetic Equation for a Dense Soliton Gas, Phys. Rev. Lett. 95, 204101 (2005).
  16. G. El and A. Tovbis, Spectral theory of soliton and breather gases for the focusing nonlinear Schrödinger equation, Phys. Rev. E 101, 052207 (2020).
  17. L. Pastur and A. Figotin, Spectra of random and almost periodic potentials (Springer, 1992).
  18. A. Tovbis and F. Wang, Recent developments in spectral theory of the focusing NLS soliton and breather gases: The thermodynamic limit of average densities, fluxes and certain meromorphic differentials; periodic gases, J. Phys. A: Math. Theor. 55, 424006 (2022).
  19. V. E. Zakharov and A. B. Shabat, Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Wave in Nonlinear Media, Sov. Phys. JETP 34, 62 (1972).
  20. See Supplemental Material, which includes Refs. [44,45].
  21. [first reference in Supplemental Material not already in paper] A. A. Gelash and D. S. Agafontsev, Strongly interacting soliton gas and formation of rogue waves, Phys. Rev. E 98, 042210 (2018).
  22. [last reference in Supplemental Material not already in paper] T. Congy, G. El, and G. Roberti, Soliton gas in bidirectional dispersive hydrodynamics, Phys. Rev. E 103, 042201 (2021).
  23. T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water Part 1. Theory, J. Fluid Mech. 27, 417 (1967).
  24. V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Physica D 238, 540 (2009).
  25. A. Tikan, Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear schrödinger equation, Phys. Rev. E 101, 012209 (2020).
  26. M. Bertola and A. Tovbis, Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I, Commun. Pure Appl. Math. 66, 678 (2013).
  27. A. Tovbis, S. Venakides, and X. Zhou, On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation, Commun. Pure Appl. Math. 57, 877 (2004).
  28. J. C. Bronski, Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem, Physica D 97, 376 (1996).
  29. G. Biondini, J. Oregero, and A. Tovbis, On the spectrum of the periodic focusing Zakharov–Shabat operator, J. Spectr. Theory 12, 939 (2023).
  30. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, eds., Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics, Nonlinear Physical Science (Higher Education Press ; Springer Verlag, Beijing : Berlin, 2011).
  31. J. D. Meiss and W. Horton, Drift-Wave Turbulence from a Soliton Gas, Phys. Rev. Lett. 48, 1362 (1982).
  32. V. Zakharov and E. Kuznetsov, Quasi-classical theory of threedimensional wave collapse, Sov. Phys. JETP 64, 773 (1986).
  33. V. E. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP 35, 908 (1972).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube