Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Global Existence and Aggregation of Chemotaxis-fluid Systems in Dimension Two (2307.08295v3)

Published 17 Jul 2023 in math.AP

Abstract: To describe the cellular self-aggregation phenomenon, some strongly coupled PDEs named as Keller-Segel (KS) and Patlak-Keller-Segel (PKS) systems were proposed in 1970s. Since KS and PKS systems possess relatively simple structures but admit rich dynamics, plenty of scholars have studied them and obtained many significant results. However, the cells in general direct their movement in liquid. As a consequence, it seems more realistic to consider the influence of ambient fluid flow on the chemotactic mechanism. Motivated by this, He et al. (SIAM J. Math. Anal., Vol. 53, No. 3, 2021) proposed a coupled Patlak-Keller-Segel-Navier-Stokes system that features the effect of the friction induced by the cells on the ambient fluid flow. In their pioneer work, the global existence of solutions of such system in 2D was established when the initial mass is strictly less than a threshold, which is referred to as the subcritical case. The last two authors and Zhou (Indiana Univ. Math. J., Vol. 72, No. 1, 2023) extended their result to the critical case. To our best knowledge, this system has only been studied in either the whole space or periodic domains. In this paper, we consider the chemotaxis-fluid system in two-dimensional bounded domains, in which the boundary conditions are Neumann conditions for the cell density and the chemical concentration, and the Navier slip boundary condition with zero friction for the fluid velocity. We prove that the solution of the system exists globally in time with the subcritical mass. Concerning the critical mass case, we construct the boundary spot equilibrium rigorously via the inner-outer gluing method. In particular, we develop the global $W{2,p}$ theory for the 2D stationary Stokes system subject to Navier boundary conditions and further establish semigroup estimates of the nonstationary counterpart by analyzing the Stokes eigenvalue problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube