$\texttt{BTSbot}$: A Multi-input Convolutional Neural Network to Automate and Expedite Bright Transient Identification for the Zwicky Transient Facility (2307.07618v2)
Abstract: The Bright Transient Survey (BTS) relies on visual inspection ("scanning") to select sources for accomplishing its mission of spectroscopically classifying all bright extragalactic transients found by the Zwicky Transient Facility (ZTF). We present $\texttt{BTSbot}$, a multi-input convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 14 extracted features. $\texttt{BTSbot}$ eliminates the need for scanning by automatically identifying and requesting follow-up observations of new bright ($m\,<18.5\,\mathrm{mag}$) transient candidates. $\texttt{BTSbot}$ outperforms BTS scanners in terms of completeness (99% vs. 95%) and identification speed (on average, 7.4 hours quicker). See Rehemtulla et al. 2024, ApJ, 972, 7R for the full BTSbot publication
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.