Remarks on Parikh-recognizable omega-languages (2307.07238v2)
Abstract: Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every $\omega$-language recognized by a blind counter machine is of the form $\bigcup_iU_iV_i\omega$ for Parikh recognizable languages $U_i, V_i$, but blind counter machines fall short of characterizing this class of $\omega$-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of $\omega$-language of the form $\bigcup_iU_iV_i\omega$ for all combinations of languages $U_i, V_i$ being regular or Parikh-recognizable. When both $U_i$ and $V_i$ are regular, this coincides with B\"uchi's classical theorem. We study the effect of $\varepsilon$-transitions in all variants of Parikh automata and show that almost all of them admit $\varepsilon$-elimination. Finally we study the classical decision problems with applications to model checking.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.