Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A note on the policy iteration algorithm for discounted Markov decision processes for a class of semicontinuous models (2307.07038v1)

Published 13 Jul 2023 in math.OC

Abstract: The standard version of the policy iteration (PI) algorithm fails for semicontinuous models, that is, for models with lower semicontinuous one-step costs and weakly continuous transition law. This is due to the lack of continuity properties of the discounted cost for stationary policies, thus appearing a measurability problem in the improvement step. The present work proposes an alternative version of PI algorithm which performs an smoothing step to avoid the measurability problem. Assuming that the model satisfies a Lyapunov growth conditions and also some standard continuity-compactness properties, it is shown the linear convergence of the policy iteration functions to the optimal value function. Strengthening the continuity conditions, in a second result, it is shown that among the improvement policies there is one with the best possible improvement and whose cost function is continuous.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.