Papers
Topics
Authors
Recent
2000 character limit reached

Data Augmentation in Training CNNs: Injecting Noise to Images (2307.06855v1)

Published 12 Jul 2023 in cs.CV and cs.LG

Abstract: Noise injection is a fundamental tool for data augmentation, and yet there is no widely accepted procedure to incorporate it with learning frameworks. This study analyzes the effects of adding or applying different noise models of varying magnitudes to Convolutional Neural Network (CNN) architectures. Noise models that are distributed with different density functions are given common magnitude levels via Structural Similarity (SSIM) metric in order to create an appropriate ground for comparison. The basic results are conforming with the most of the common notions in machine learning, and also introduce some novel heuristics and recommendations on noise injection. The new approaches will provide better understanding on optimal learning procedures for image classification.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.