Papers
Topics
Authors
Recent
2000 character limit reached

A Linear Algebraic Framework for Dynamic Scheduling Over Memory-Equipped Quantum Networks (2307.06009v2)

Published 12 Jul 2023 in quant-ph and cs.NI

Abstract: Quantum Internetworking is a recent field that promises numerous interesting applications, many of which require the distribution of entanglement between arbitrary pairs of users. This work deals with the problem of scheduling in an arbitrary entanglement swapping quantum network - often called first generation quantum network - in its general topology, multicommodity, loss-aware formulation. We introduce a linear algebraic framework that exploits quantum memory through the creation of intermediate entangled links. The framework is then employed to apply Lyapunov Drift Minimization (a standard technique in classical network science) to mathematically derive a natural class of scheduling policies for quantum networks minimizing the square norm of the user demand backlog. Moreover, an additional class of Max-Weight inspired policies is proposed and benchmarked, reducing significantly the computation cost at the price of a slight performance degradation. The policies are compared in terms of information availability, localization and overall network performance through an ad-hoc simulator that admits user-provided network topologies and scheduling policies in order to showcase the potential application of the provided tools to quantum network design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. P. Fittipaldi, A. Giovanidis, and F. Grosshans, “A linear algebraic framework for quantum internet dynamic scheduling,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   Los Alamitos, CA, USA: IEEE Computer Society, sep 2022, pp. 447–453. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCE53715.2022.00066
  2. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, May 2013. [Online]. Available: https://doi.org/10.1038/nature12016
  3. D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature, vol. 594, no. 7861, pp. 37–40, Jun 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03481-8
  4. S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, no. 7911, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
  5. W. Kozlowski, S. Wehner, R. V. Meter, B. Rijsman, A. S. Cacciapuoti, M. Caleffi, and S. Nagayama, “Architectural Principles for a Quantum Internet,” RFC 9340, Mar. 2023. [Online]. Available: https://www.rfc-editor.org/info/rfc9340
  6. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, Oct. 2018. [Online]. Available: https://doi.org/10.1126/science.aam9288
  7. A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entanglement meets classical communications: Quantum teleportation for the quantum internet,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3808–3833, 2020.
  8. R. V. Meter, R. Satoh, N. Benchasattabuse, K. Teramoto, T. Matsuo, M. Hajdusek, T. Satoh, S. Nagayama, and S. Suzuki, “A quantum internet architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   Los Alamitos, CA, USA: IEEE Computer Society, sep 2022, pp. 341–352. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCE53715.2022.00055
  9. T. Bonald and J. Roberts, “Scheduling network traffic,” SIGMETRICS Perform. Eval. Rev., vol. 34, no. 4, p. 29–35, mar 2007. [Online]. Available: https://doi.org/10.1145/1243401.1243408
  10. “Quantum protocol zoo.” [Online]. Available: https://wiki.veriqloud.fr
  11. M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini, and A. S. Cacciapuoti, “Distributed quantum computing: a survey,” 2022.
  12. K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, and I. Tzitrin, “Quantum repeaters: From quantum networks to the quantum internet,” 2022.
  13. M. Skrzypczyk and S. Wehner, “An architecture for meeting quality-of-service requirements in multi-user quantum networks,” 2021.
  14. W. Dai, T. Peng, and M. Z. Win, “Optimal remote entanglement distribution,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 540–556, 2020.
  15. T. N. Nguyen, K. J. Ambarani, L. Le, I. Djordjevic, and Z.-L. Zhang, “A multiple-entanglement routing framework for quantum networks,” 2022.
  16. A. Chandra, W. Dai, and D. Towsley, “Scheduling quantum teleportation with noisy memories,” 2022.
  17. W. Dai and D. Towsley, “Entanglement swapping for repeater chains with finite memory sizes,” 2021. [Online]. Available: https://arxiv.org/abs/2111.10994
  18. E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner, “Shortcuts to quantum network routing,” 2016. [Online]. Available: https://arxiv.org/abs/1610.05238
  19. K. Chakraborty, A. Dahlberg, F. Rozpedek, and S. Wehner, “Distributed Routing in a Quantum Internet,” in APS March Meeting Abstracts, ser. APS Meeting Abstracts, vol. 2019, Jan. 2019, p. L28.005.
  20. S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quantum overlay network for efficient entanglement distribution,” 2022.
  21. S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific Reports, vol. 6, no. 1, p. 20463, Feb 2016. [Online]. Available: https://doi.org/10.1038/srep20463
  22. G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement distribution switch,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–16, 2021.
  23. W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in quantum switches: Protocol design and stability analysis,” 2021. [Online]. Available: https://arxiv.org/abs/2110.04116
  24. T. Vasantam and D. Towsley, “A throughput optimal scheduling policy for a quantum switch,” in Quantum Computing, Communication, and Simulation II, P. R. Hemmer and A. L. Migdall, Eds.   SPIE, mar 2022.
  25. N. K. Panigrahy, T. Vasantam, D. Towsley, and L. Tassiulas, “On the capacity region of a quantum switch with entanglement purification,” 2022.
  26. L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks,” IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, 1992.
  27. B. C. Coutinho, R. Monteiro, L. Bugalho, and F. A. Monteiro, “Entanglement routing based on fidelity curves for quantum photonics channels,” 2023.
  28. L. Gyongyosi and S. Imre, “Opportunistic entanglement distribution for the quantum internet,” Scientific Reports, vol. 9, no. 1, Feb. 2019. [Online]. Available: https://doi.org/10.1038/s41598-019-38495-w
  29. P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “On the analysis of a multipartite entanglement distribution switch,” in Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 49–50. [Online]. Available: https://doi.org/10.1145/3393691.3394203
  30. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, no. 6862, pp. 413–418, Nov. 2001. [Online]. Available: https://doi.org/10.1038/35106500
  31. L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar, “Distributing multipartite entanglement over noisy quantum networks,” Quantum, vol. 7, p. 920, Feb. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-02-09-920
  32. K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement distribution in a quantum network: A multicommodity flow-based approach,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–21, 2020.
  33. C. Meignant, D. Markham, and F. Grosshans, “Distributing graph states over arbitrary quantum networks,” Phys. Rev. A, vol. 100, p. 052333, Nov 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.100.052333
  34. A. Pirker and W. Dür, “A quantum network stack and protocols for reliable entanglement-based networks,” New Journal of Physics, vol. 21, no. 3, p. 033003, mar 2019. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/ab05f7
  35. L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and cross-layer control in wireless networks,” Foundations and Trends® in Networking, vol. 1, no. 1, pp. 1–144, 2006. [Online]. Available: http://dx.doi.org/10.1561/1300000001
  36. A. Giovanidis, Q. Liao, and S. Stańczak, “Measurement-adaptive cellular random access protocols,” Wireless Networks, vol. 20, no. 6, pp. 1495–1514, Jan. 2014. [Online]. Available: https://doi.org/10.1007/s11276-014-0689-y
  37. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  38. A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.
  39. P. Fittipaldi, “Simulator github repository,” 2023. [Online]. Available: https://github.com/pfittipaldi/DynSchedSimulator_Journal
  40. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998. [Online]. Available: https://doi.org/10.1038/30918
  41. A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpȩdek, M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner, “A link layer protocol for quantum networks,” in Proceedings of the ACM Special Interest Group on Data Communication, ser. SIGCOMM ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 159–173. [Online]. Available: https://doi.org/10.1145/3341302.3342070
  42. P. Promponas, V. Valls, and L. Tassiulas, “Full exploitation of limited memory in quantum entanglement switching,” 2023.
  43. T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong, D. Podareanu, A. Torres-Knoop, D. Elkouss, and S. Wehner, “NetSquid, a NETwork simulator for QUantum information using discrete events,” Communications Physics, vol. 4, no. 1, Jul. 2021. [Online]. Available: https://doi.org/10.1038/s42005-021-00647-8
  44. R. Satoh, M. Hajdusek, N. Benchasattabuse, S. Nagayama, K. Teramoto, T. Matsuo, S. Metwalli, P. Pathumsoot, T. Satoh, S. Suzuki, and R. Meter, “Quisp: a quantum internet simulation package,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   Los Alamitos, CA, USA: IEEE Computer Society, sep 2022, pp. 353–364. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCE53715.2022.00056
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.