Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Programmable Integrated Photonics for Topological Hamiltonians (2307.05003v1)

Published 11 Jul 2023 in physics.optics

Abstract: A variety of topological Hamiltonians have been demonstrated in photonic platforms, leading to fundamental discoveries and enhanced robustness in applications such as lasing, sensing, and quantum technologies. To date, each topological photonic platform implements a specific type of Hamiltonian with inexistent or limited reconfigurability. Here, we propose and demonstrate different topological models by using the same reprogrammable integrated photonics platform, consisting of a hexagonal mesh of silicon Mach-Zehnder interferometers with phase-shifters. We specifically demonstrate a one-dimensional Su-Schrieffer-Heeger Hamiltonian supporting a localized topological edge mode and a higher-order topological insulator based on a two-dimensional breathing Kagome Hamiltonian with three corner states. These results highlight a nearly universal platform for topological models that may fast-track research progress toward applications of topological photonics and other coupled systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys., vol. 91, p. 015006, 2019. https://link.aps.org/doi/10.1103/RevModPhys.91.015006
  2. H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J. Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zilberberg, Y. Yang, B. Zhang, A. Alù, R. Thomale, I. Carusotto, P. St-Jean, A. Amo, A. Dutt, L. Yuan, S. Fan, X. Yin, C. Peng, T. Ozawa, and A. Blanco-Redondo, “Roadmap on topological photonics,” Journal of Physics: Photonics, vol. 4, no. 3, p. 032501, 2022. https://iopscience.iop.org/article/10.1088/2515-7647/ac4ee4https://iopscience.iop.org/article/10.1088/2515-7647/ac4ee4/meta
  3. M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nature nanotechnology, vol. 14, no. 1, pp. 31–34, 2019.
  4. S. Arora, T. Bauer, R. Barczyk, E. Verhagen, and L. Kuipers, “Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths,” Light: Science & Applications, vol. 10, no. 1, p. 9, 2021.
  5. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, “Lasing in topological edge states of a one-dimensional lattice,” Nature Photonics 2017 11:10, vol. 11, no. 10, pp. 651–656, 2017. https://www.nature.com/articles/s41566-017-0006-2
  6. B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science, vol. 358, no. 6363, pp. 636–640, 2017.
  7. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, “Topological insulator laser: Experiments,” Science, vol. 359, no. 6381, 2018. https://www.science.org/doi/10.1126/science.aar4005
  8. R. Contractor, W. Noh, W. Redjem, W. Qarony, E. Martin, S. Dhuey, A. Schwartzberg, and B. Kanté, “Scalable single-mode surface-emitting laser via open-Dirac singularities,” Nature 2022 608:7924, vol. 608, no. 7924, pp. 692–698, 2022. https://www.nature.com/articles/s41586-022-05021-4
  9. S. Mittal, E. A. Goldschmidt, and M. Hafezi, “A topological source of quantum light,” Nature 2018 561:7724, vol. 561, no. 7724, pp. 502–506, 2018. https://www.nature.com/articles/s41586-018-0478-3
  10. A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, “Topological protection of biphoton states,” Science, vol. 362, no. 6414, pp. 568–571, 2018. https://www.science.org/doi/10.1126/science.aau4296
  11. M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, and A. Blanco-Redondo, “Topologically protected entangled photonic states,” Nanophotonics, vol. 8, no. 8, pp. 1327–1335, 2019. https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0058/html?lang=en
  12. S. Mittal, V. V. Orre, E. A. Goldschmidt, and M. Hafezi, “Tunable quantum interference using a topological source of indistinguishable photon pairs,” Nature Photonics 2021 15:7, vol. 15, no. 7, pp. 542–548, 2021. https://www.nature.com/articles/s41566-021-00810-1
  13. C. Doyle, W. W. Zhang, M. Wang, B. A. Bell, S. D. Bartlett, and A. Blanco-Redondo, “Biphoton entanglement of topologically distinct modes,” Physical Review A, vol. 105, no. 2, p. 023513, 2022. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.023513
  14. K. V. Klitzing, G. Dorda, and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,” Physical Review Letters, vol. 45, no. 6, p. 494, 1980. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.494
  15. S. Kivelson, W. P. Su, R. Sugar, N. Andrei, S. Shenker, K. Maki, M. Stone, p. J. R Schrieffer One, J. B. Schrieffer, A. J. Heeger, P. B. Bev, J. E. Hirsch, D. J. Scalapino, B. L. Sugar, B. Blankenbecler, P. Bev Lett, E. Fradkin, u. G. Beni, P. Pincus, J. Kanamori, P. Bev, D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Physical Review Letters, vol. 49, no. 6, p. 405, 1982. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.49.405
  16. F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Physical Review Letters, vol. 100, no. 1, p. 013904, 2008. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.013904
  17. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature, vol. 461, no. 7265, pp. 772–775, 2009.
  18. N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen, “Observation of optical Shockley-like surface states in photonic superlattices,” Optics Letters, Vol. 34, Issue 11, pp. 1633-1635, vol. 34, no. 11, pp. 1633–1635, 2009. https://opg.optica.org/viewmedia.cfm?uri=ol-34-11-1633{&}seq=0{&}html=truehttps://opg.optica.org/abstract.cfm?uri=ol-34-11-1633https://opg.optica.org/ol/abstract.cfm?uri=ol-34-11-1633
  19. J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, “Observation of a Topological Transition in the Bulk of a Non-Hermitian System,” Physical Review Letters, vol. 115, no. 4, p. 040402, 2015. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.040402
  20. A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, “Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States,” Physical review letters, vol. 116, no. 16, p. 163901, 2016. https://stagingpure.psu.edu/en/publications/topological-optical-waveguiding-in-silicon-and-the-transition-bet
  21. C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, “Selective enhancement of topologically induced interface states in a dielectric resonator chain,” Nature Communications 2015 6:1, vol. 6, no. 1, pp. 1–5, 2015. https://www.nature.com/articles/ncomms7710
  22. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature, vol. 496, no. 7444, pp. 196–200, 2013.
  23. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nature Photonics 2013 7:12, vol. 7, no. 12, pp. 1001–1005, 2013. https://www.nature.com/articles/nphoton.2013.274
  24. A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Materials 2013 12:3, vol. 12, no. 3, pp. 233–239, 2012. https://www.nature.com/articles/nmat3520
  25. M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of topological phase transitions in photonic quasicrystals,” Physical Review Letters, vol. 110, no. 7, p. 076403, 2013. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.076403
  26. X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, “Robust reconfigurable electromagnetic pathways within a photonic topological insulator,” Nature Materials 2016 15:5, vol. 15, no. 5, pp. 542–548, 2016. https://www.nature.com/articles/nmat4573
  27. H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, “Non-Hermitian topological light steering,” Science, vol. 365, no. 6458, pp. 1163–1166, 2019. https://www.science.org/doi/10.1126/science.aay1064
  28. T. Cao, L. Fang, Y. Cao, N. Li, Z. Fan, and Z. Tao, “Dynamically reconfigurable topological edge state in phase change photonic crystals,” Science Bulletin, vol. 64, no. 12, pp. 814–822, 2019.
  29. J.-P. Xia, D. Jia, H.-X. Sun, S.-Q. Yuan, Y. Ge, Q.-R. Si, X.-J. Liu, J.-P. Xia, D. Jia, X. H. Sun, S.-Q. Yuan, Y. Ge, Q.-R. Si, and J. X. Liu, “Programmable Coding Acoustic Topological Insulator,” Advanced Materials, vol. 30, no. 46, p. 1805002, 2018. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201805002https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805002https://onlinelibrary.wiley.com/doi/10.1002/adma.201805002
  30. A. Darabi, M. Collet, and M. J. Leamy, “Experimental realization of a reconfigurable electroacoustic topological insulator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 28, pp. 16 138–16 142, 2020. https://www.pnas.org/doi/abs/10.1073/pnas.1920549117
  31. J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, and T. J. Cui, “Reprogrammable plasmonic topological insulators with ultrafast control,” Nature Communications 2021 12:1, vol. 12, no. 1, pp. 1–7, 2021. https://www.nature.com/articles/s41467-021-25835-6
  32. W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon, D. Englund, F. Morichetti, and A. Melloni, “Programmable photonic circuits,” Nature 2020 586:7828, vol. 586, no. 7828, pp. 207–216, 2020. https://www.nature.com/articles/s41586-020-2764-0
  33. D. Pérez-López, A. López, P. DasMahapatra, and J. Capmany, “Multipurpose self-configuration of programmable photonic circuits,” Nature Communications 2020 11:1, vol. 11, no. 1, pp. 1–11, 2020. https://www.nature.com/articles/s41467-020-19608-w
  34. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica, vol. 5, no. 12, pp. 1623–1631, 2018. https://opg.optica.org/optica/abstract.cfm?URI=optica-5-12-1623
  35. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica, vol. 3, no. 12, pp. 1460–1465, 2016. https://opg.optica.org/optica/abstract.cfm?URI=optica-3-12-1460
  36. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Physical Review Letters, vol. 42, no. 25, p. 1698, 1979. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.42.1698
  37. M. Ezawa, “Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices,” Phys. Rev. Lett., vol. 120, p. 026801, 2018. https://link.aps.org/doi/10.1103/PhysRevLett.120.026801
  38. A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, “Observation of p t-symmetry breaking in complex optical potentials,” Physical review letters, vol. 103, no. 9, p. 093902, 2009.
  39. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nature physics, vol. 6, no. 3, pp. 192–195, 2010.
  40. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity–time symmetry and exceptional points in photonics,” Nature materials, vol. 18, no. 8, pp. 783–798, 2019.
  41. D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express, vol. 24, no. 11, pp. 12 093–12 106, 2016. https://opg.optica.org/oe/abstract.cfm?URI=oe-24-11-12093
  42. D. P. López, “Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–12, 2019.
  43. E. Sánchez, A. López, and D. Pérez-López, “Simulation of Highly Coupled Programmable Photonic Circuits,” Journal of Lightwave Technology, Vol. 40, Issue 19, pp. 6423-6434, vol. 40, no. 19, pp. 6423–6434, 2022. https://opg.optica.org/abstract.cfm?uri=jlt-40-19-6423https://opg.optica.org/jlt/abstract.cfm?uri=jlt-40-19-6423
  44. C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, “A quantized microwave quadrupole insulator with topologically protected corner states,” Nature, vol. 555, no. 7696, pp. 346–350, 2018.
  45. M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature, vol. 555, no. 7696, pp. 342–345, 2018.
  46. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert et al., “Topolectrical-circuit realization of topological corner modes,” Nature Physics, vol. 14, no. 9, pp. 925–929, 2018.
  47. B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan, M.-H. Lu, Z.-L. Wang, and Y.-F. Chen, “Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals,” Physical Review Letters, vol. 122, no. 23, p. 233903, 2019.
  48. X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen, and J.-W. Dong, “Direct observation of corner states in second-order topological photonic crystal slabs,” Phys. Rev. Lett., vol. 122, p. 233902, 2019. https://link.aps.org/doi/10.1103/PhysRevLett.122.233902
  49. Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, “Photonic crystal nanocavity based on a topological corner state,” Optica, vol. 6, no. 6, pp. 786–789, 2019.
  50. S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, “Photonic quadrupole topological phases,” Nature Photonics, vol. 13, no. 10, pp. 692–696, 2019.
  51. A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, and M. Bourennane, “Corner states of light in photonic waveguides,” Nature Photonics, vol. 13, no. 10, pp. 697–700, 2019.
  52. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 292–301, 2014.
  53. H. Nasari, G. G. Pyrialakos, D. N. Christodoulides, and M. Khajavikhan, “Non-hermitian topological photonics,” Opt. Mater. Express, vol. 13, no. 4, pp. 870–885, 2023. https://opg.optica.org/ome/abstract.cfm?URI=ome-13-4-870
  54. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature photonics, vol. 6, no. 11, pp. 782–787, 2012.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.