Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Summary Statistics with Mutual Information for Cosmological Inference (2307.04994v1)

Published 11 Jul 2023 in astro-ph.CO and astro-ph.IM

Abstract: The ability to compress observational data and accurately estimate physical parameters relies heavily on informative summary statistics. In this paper, we introduce the use of mutual information (MI) as a means of evaluating the quality of summary statistics in inference tasks. MI can assess the sufficiency of summaries, and provide a quantitative basis for comparison. We propose to estimate MI using the Barber-Agakov lower bound and normalizing flow based variational distributions. To demonstrate the effectiveness of our method, we compare three different summary statistics (namely the power spectrum, bispectrum, and scattering transform) in the context of inferring reionization parameters from mock images of 21~cm observations with Square Kilometre Array. We find that this approach is able to correctly assess the informativeness of different summary statistics and allows us to select the optimal set of statistics for inference tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.